图书介绍
CMOS超大规模集成电路设计 英文版PDF|Epub|txt|kindle电子书版本网盘下载
- (美)韦斯特,(美)哈里斯著 著
- 出版社: 北京:电子工业出版社
- ISBN:9787121141447
- 出版时间:2011
- 标注页数:751页
- 文件大小:206MB
- 文件页数:775页
- 主题词:CMOS电路:超大规模集成电路-电路设计-高等学校-教材-英文
PDF下载
下载说明
CMOS超大规模集成电路设计 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Welcome to VLSI1
1.1 A Brief History1
1.2 Preview6
1.3 MOS Transistors6
1.4 CMOS Logic9
1.4.1 The Inverter9
1.4.2 The NAND Gate9
1.4.3 CMOS Logic Gates9
1.4.4 The NOR Gate11
1.4.5 Compound Gates11
1.4.6 Pass Transistors and Transmission Gates12
1.4.7 Tristates14
1.4.8 Multiplexers15
1.4.9 Sequential Circuits16
1.5 CMOS Fabrication and Layout19
1.5.1 Inverter Cross-Section19
1.5.2 Fabrication Process20
1.5.3 Layout Design Rules24
1.5.4 Gate Layouts27
1.5.5 Stick Diagrams28
1.6 Design Partitioning29
1.6.1 Design Abstractions30
1.6.2 Structured Design31
1.6.3 Behavioral,Structural,and Physical Domains31
1.7 Example:A Sinple MIPS Microprocessor33
1.7.1 MIPS Architecture33
1.7.2 Multicycle MIPS Microarchitecture34
1.8 Logic Design38
1.8.1 Top-Level Interfaces38
1.8.2 Block Diagrams38
1.8.3 Hierarchy40
1.8.4 Hardware Description Languages40
1.9 Circuit Design42
1.10 Physical Design45
1.10.1 Floorplanning45
1.10.2 Standard Cells48
1.10.3 Pitch Matching50
1.10.4 Slice Plans50
1.10.5 Arrays51
1.10.6 Area Estimation51
1.11 Design Veri.cation53
1.12 Fabrication,Packaging,and Testing54
Summary and a Look Ahead55
Exercises57
Chapter 2 Devices61
2.1 Introduction61
2.2 Long-Channel I-V Characteristics64
2.3 C-V Characteristics68
2.3.1 Simple MOS Capacitance Models68
2.3.2 Detailed MOS Gate Capacitance Model70
2.3.3 Detailed MOS Diffusion Capacitance Model72
2.4 Nonideal I-V Effects74
2.4.1 Mobility Degradation and Velocity Saturation75
2.4.2 Channel Length Modulation78
2.4.3 Threshold Voltage Effects79
2.4.4 Leakage80
2.4.5 Temperature Dependence85
2.4.6 Geometry Dependence86
2.4.7 Summary86
2.5 DC Transfer Characteristics87
2.5.1 Static CMOS Inverter DC Characteristics88
2.5.2 Beta Ratio Effects90
2.5.3 Noise Margin91
2.5.4 Pass Transistor DC Characteristics92
2.6 Pitfalls and Fallacies93
Summary94
Exercises95
Chapter 3 Speed99
3.1 Introduction99
3.1.1 De.nitions99
3.1.2 Timing Optimization100
3.2 Transient Response101
3.3 RC Delay Model104
3.3.1 Effective Resistance104
3.3.2 Gate and Diffusion Capacitance105
3.3.3 Equivalent RC Circuits105
3.3.4 Transient Response106
3.3.5 Elmore Delay108
3.3.6 Layout Dependence of Capacitance111
3.3.7 Determining Effective Resistance112
3.4 Linear Delay Model113
3.4.1 Logical Effort114
3.4.2 Parasitic Delay114
3.4.3 Delay in a Logic Gate116
3.4.4 Drive117
3.4.5 Extracting Logical Effort from Datasheets117
3.4.6 Limitations to the Linear Delay Model118
3.5 Logical Effort of Paths121
3.5.1 Delay in Multistage Logic Networks121
3.5.2 Choosing the Best Number of Stages124
3.5.3 Example126
3.5.4 Summary and Observations127
3.5.5 Limitations of Logical Effort129
3.5.6 Iterative Solutions for Sizing129
3.6 Timing Analysis Delay Models131
3.6.1 Slope-Based Linear Model131
3.6.2 Nonlinear Delay Model132
3.6.3 Current Source Model132
3.7 Pitfalls and Fallacies132
3.8 Historical Perspectives133
Summary134
Exercises134
Chapter 4 Power139
4.1 Introduction139
4.1.1 De.nitions140
4.1.2 Examples140
4.1.3 Sources of Power Dissipation142
4.2 Dynamic Power143
4.2.1 Activity Factor144
4.2.2 Capacitance146
4.2.3 Voltage148
4.2.4 Frequency150
4.2.5 Short-Circuit Current151
4.2.6 Resonant Circuits151
4.3 Static Power152
4.3.1 Static Power Sources152
4.3.2 Power Gating155
4.3.3 Multiple Threshold Voltages and Oxide Thicknesses157
4.3.4 Variable Threshold Voltages157
4.3.5 Input Vector Control158
4.4 Energy-Delay Optimization158
4.4.1 Minimum Energy158
4.4.2 Minimum Energy-Delay Product161
4.4.3 Minimum Energy Under a Delay Constraint161
4.5 Low Power Architectures162
4.5.1 Microarchitecture162
4.5.2 Parallelism and Pipelining162
4.5.3 Power Management Modes163
4.6 Pitfalls and Fallacies164
4.7 Historical Perspective165
Summary167
Exercises167
Chapter 5 Wires169
5.1 Introduction169
5.1.1 Wire Geometry169
5.1.2 Example:Intel Metal Stacks170
5.2 Interconnect Modeling171
5.2.1 Resistance172
5.2.2 Capacitance173
5.2.3 Inductance176
5.2.4 Skin Effect177
5.2.5 Temperature Dependence178
5.3 Interconnect Impact178
5.3.1 Delay178
5.3.2 Energy180
5.3.3 Crosstalk180
5.3.4 Inductive Effects182
5.3.5 An Aside on Effective Resistance and Elmore Delay185
5.4 Interconnect Engineering187
5.4.1 Width,Spacing,and Layer187
5.4.2 Repeaters188
5.4.3 Crosstalk Control190
5.4.4 Low-Swing Signaling192
5.4.5 Regenerators194
5.5 Logical Effort with Wires194
5.6 Pitfalls and Fallacies195
Summary196
Exercises196
Chapter 6 Scaling,Reliability,and Variability199
6.1 Introduction199
6.2 Variability199
6.2.1 Supply Voltage200
6.2.2 Temperature200
6.2.3 Process Variation201
6.2.4 Design Corners202
6.3 Reliability204
6.3.1 Reliability Terminology204
6.3.2 Oxide Wearout205
6.3.3 Interconnect Wearout207
6.3.4 Soft Errors209
6.3.5 Overvoltage Failure210
6.3.6 Latchup211
6.4 Scaling212
6.4.1 Transistor Scaling213
6.4.2 Interconnect Scaling215
6.4.3 International Technology Roadmap for Semiconductors216
6.4.4 Impacts on Design217
6.5 Statistical Analysis of Variability221
6.5.1 Properties of Random Variables221
6.5.2 Variation Sources224
6.5.3 Variation Impacts227
6.6 Variation-Tolerant Design232
6.6.1 Adaptive Control233
6.6.2 Fault Tolerance233
6.7 Pitfalls and Fallacies235
6.8 Historical Perspective236
Summary242
Exercises242
Chapter 7 SPICE245
7.1 Introduction245
7.2 A SPICE Tutorial246
7.2.1 Sources and Passive Components246
7.2.2 Transistor DC Analysis250
7.2.3 Inverter Transient Analysis250
7.2.4 Subcircuits and Measurement252
7.2.5 Optimization254
7.2.6 Other HSPICE Commands256
7.3 Device Models256
7.3.1 Level 1 Models257
7.3.2 Level 2 and 3 Models258
7.3.3 BSIM Models258
7.3.4 Diffusion Capacitance Models258
7.3.5 Design Comers260
7.4 Device Characterization261
7.4.1 I-V Characteristics261
7.4.2 Threshold Voltage264
7.4.3 Gate Capacitance266
7.4.4 Parasitic Capacitance266
7.4.5 Effective Resistance268
7.4.6 Comparison of Processes269
7.4.7 Process and Environmental Sensitivity271
7.5 Circuit Characterization271
7.5.1 Path Simulations271
7.5.2 DC Transfer Characteristics273
7.5.3 Logical Effort273
7.5.4 Power and Energy276
7.5.5 Simulating Mismatches277
7.5.6 Monte Carlo Simulation277
7.6 Interconnect Simulation277
7.7 Pitfalls and Fallacies280
Summary282
Exercises282
Chapter 8 Gates285
8.1 Introduction285
8.2 Circuit Families286
8.2.1 Static CMOS287
8.2.2 Ratioed Circuits292
8.2.3 Cascode Voltage Switch Logic297
8.2.4 Dynamic Circuits297
8.2.5 Pass-Transistor Circuits307
8.3 Circuit Pitfalls312
8.3.1 Threshold Drops313
8.3.2 Ratio Failures313
8.3.3 Leak age314
8.3.4 Charge Sharing314
8.3.5 Power Supply Noise314
8.3.6 Hot Spots315
8.3.7 Minority Carrier Injection315
8.3.8 Back-Gate Coupling316
8.3.9 Diffusion Input Noise Sensitivity316
8.3.10 Process Sensitivity316
8.3.11 Example:Domino Noise Budgets317
8.4 Silicon-On-Insulator Circuit Design318
8.4.1 Floating Body Voltage319
8.4.2 SOI Advantages320
8.4.3 SOI Disadvantages320
8.4.4 Implications for Circuit Styles321
8.4.5 Summary322
8.5 Subthreshold Circuit Design322
8.5.1 Sizing323
8.5.2 Gate Selection323
8.6 Pitfalls and Fallacies324
8.7 Historical Perspective325
Summary327
Exercises328
Chapter 9 Sequencing333
9.1 Introduction333
9.2 Sequencing Static Circuits334
9.2.1 Sequencing Methods334
9.2.2 Max-Delay Constraints337
9.2.3 Min-Delay Constraints341
9.2.4 Time Borrowing344
9.2.5 Clock Skew347
9.3 Circuit Design of Latches and Flip-Flops349
9.3.1 Conventional CMOS Latches350
9.3.2 Conventional CMOS Flip-Flops351
9.3.3 Pulsed Latches353
9.3.4 Resettable Latches and Flip-Flops354
9.3.5 Enabled Latches and Flip-Flops355
9.3.6 Incorporating Logic into Latches356
9.3.7 Klass Semidynamic Flip-Flop(SDFF)357
9.3.8 Differential Flip-Flops357
9.3.9 Dual Edge-Triggered Flip-Flops358
9.3.10 Radiation-Hardened Flip-Flops359
9.4 Static Sequencing Element Methodology360
9.4.1 Choice of Elements361
9.4.2 Characterizing Sequencing Element Delays363
9.4.3 State Retention Registers366
9.4.4 Level-Converter Flip-Flops366
9.4.5 Design Margin and Adaptive Sequential Elements367
9.5 Synchronizers369
9.5.1 Metastability370
9.5.2 A Simple Synchronizer373
9.5.3 Communicating Between Asynchronous Clock Domains374
9.5.4 Common Synchronizer Mistakes375
9.5.5 Arbiters377
9.5.6 Degrees of Synchrony377
9.6 Wave Pipelining378
9.7 Pitfalls and Fallacies380
Summary381
Exercises383
Chapter 10 Datapaths387
10.1 Introduction387
10.2 Addition/Subtraction387
10.2.1 Single-Bit Addition388
10.2.2 Carry-Propagate Addition392
10.2.3 Subtraction416
10.2.4 Multiple-Input Addition416
10.2.5 Flagged Prefix Adders417
10.3 One/Zero Detectors419
10.4 Comparators420
10.4.1 Magnitude Comparator420
10.4.2 Equality Comparator420
10.4.3 K=A+B Comparator421
10.5 Counters421
10.5.1 Binary Counters422
10.5.2 Fast Binary Counters423
10.5.3 Ring and Johnson Counters424
10.5.4 Linear-Feedback Shift Registers424
10.6 Boolean Logical Operations426
10.7 Coding426
10.7.1 Parity426
10.7.2 Error-Correcting Codes426
10.7.3 Gray Codes428
10.7.4 XOR/XNOR Circuit Forms429
10.8 Shifters430
10.8.1 Funnel S hifter431
10.8.2 Barrel Shifter433
10.8.3 Alternative Shift Functions434
10.9 Multiplication434
10.9.1 Unsigned Array Multiplication436
10.9.2 Two's Complement Array Multiplication437
10.9.3 Booth Encoding438
10.9.4 Column Addition443
10.9.5 Final Addition447
10.9.6 Fused Multiply-Add448
10.9.7 Summary448
10.10 Parallel-Prefix Computations449
10.11 Pitfalls and Fallacies451
Summary452
Exercises452
Chapter 11 Memories455
11.1 Introduction455
11.2 SRAM456
11.2.1 SRAM Cells457
11.2.2 Row Circuitry464
11.2.3 Column Circuitry468
11.2.4 Multi-Ported SRAM and Register Files472
11.2.5 Large SRAMs473
11.2.6 Low-Power SRAMs475
11.2.7 Area,Delay,and Power of RAMs and Register Files478
11.3 DRAM480
11.3.1 Subarray Architectures481
11.3.2 Column Circuitry483
11.3.3 Embedded DRAM484
11.4 Read-Only Memory485
11.4.1 Programmable ROMs487
11.4.2 NAND ROMs488
11.4.3 Flash489
11.5 Serial Access Memories491
11.5.1 Shift Registers491
11.5.2 Queues(FIFO,LIFO)491
11.6 Content-Addressable Memory493
11.7 Programmable Logic Arrays495
11.8 Robust Memory Design499
11.8.1 Redundancy499
11.8.2 Error Correcting Codes(ECC)501
11.8.3 Radiation Hardening501
11.9 Historical Perspective501
Summary503
Exercises504
Chapter 12 Packaging,Power,Clock,I/O507
12.1 Introduction507
12.2 Packaging and Cooling507
12.2.1 Package Options507
12.2.2 Chip-to-Package Connections509
12.2.3 Package Parasitics510
12.2.4 Heat Dissipation510
12.2.5 Temperature Sensors511
12.3 Power Distribution513
12.3.1 On-Chip Power Distribution Network514
12.3.2 IR Drops515
12.3.3 L di/dt Noise516
12.3.4 On-Chip Bypass Capacitance517
12.3.5 Power Network Modeling518
12.3.6 Power Supply Filtering522
12.3.7 Charge Pumps522
12.3.8 Substrate Noise523
12.3.9 Energy Scavenging523
12.4 Clocks524
12.4.1 De.nitions524
12.4.2 Clock System Architecture526
12.4.3 Global Clock Generation527
12.4.4 Global Clock Distribution529
12.4.5 Local Clock Gaters533
12.4.6 Clock Skew Budgets535
12.4.7 Adaptive Deskewing537
12.5 PLLs and DLLs538
12.5.1 PLLs538
12.5.2 DLLs545
12.5.3 Pitfalls547
12.6 I/O548
12.6.1 Basic I/O Pad Circuits549
12.6.2 Electrostatic Discharge Protection551
12.6.3 Example:MOSIS I/O Pads552
12.6.4 Mixed-Voltage I/O554
12.7 High-Speed Links555
12.7.1 High-Speed I/O Channels555
12.7.2 Channel Noise and Interference558
12.7.3 High-Speed Transmitters and Receivers559
12.7.4 Synchronous Data Transmission564
12.7.5 Clock Recovery in Source-Synchronous Systems564
12.7.6 Clock Recovery in Mesochronous Systems566
12.7.7 Clock Recovery in Pleisochronous Systems568
12.8 Random Circuits568
12.8.1 True Random Number Generators568
12.8.2 Chip Identification569
12.9 Pitfalls and Fallacies570
Summary571
Exercises572
Chapter 13 Methodology573
13.1 Introduction573
13.2 Structured Design Strategies575
13.2.1 A Software Radio—A System Example576
13.2.2 Hierarchy578
13.2.3 Regularity581
13.2.4 Modularity583
13.2.5 Locality584
13.2.6 Summary585
13.3 Design Methods585
13.3.1 Microprocessor/DSP585
13.3.2 Programmable Logic586
13.3.3 Gate Arrayand Sea of Gates Design589
13.3.4 Cell-Based Design590
13.3.5 Full Custom Design592
13.3.6 Platform-Based Design—System on a ChiP593
13.3.7 Summary594
13.4 Design Flows594
13.4.1 Behavioral Synthesis Design Flow(ASIC Design Flow)595
13.4.2 Automated Layout Generation599
13.4.3 Mixed-Signal or Custom-Design Flow603
13.5 Design Economics604
13.5.1 Non-Recurring Engineering Costs(NREs)605
13.5.2 Recurring Costs607
13.5.3 Fixed Costs608
13.5.4 Schedule609
13.5.5 Personpower611
13.5.6 Project Management611
13.5.7 Design Reuse612
13.6 Data Sheets and Documentation613
13.6.1 The Summary613
13.6.2 Pinout613
13.6.3 Description of Operation613
13.6.4 DC Specifications613
13.6.5 AC Specifications614
13.6.6 Package Diagram614
13.6.7 Principles of Operation Manual614
13.6.8 User Manual614
13.7 Pitfalls and Fallacies615
Exercises615
Chapter 14 Test617
14.1 Introduction617
14.1.1 Logic Veri.cation618
14.1.2 Debugging620
14.1.3 Manufacturing Tests622
14.2 Testers,Test Fixtures,and Test Programs624
14.2.1 Testers and Test Fixtures624
14.2.2 Test Programs626
14.2.3 Handlers627
14.3 Logic Verification Principles628
14.3.1 Test Vectors628
14.3.2 Testbenches and Harnesses629
14.3.3 Regression Testing629
14.3.4 Version Control630
14.3.5 Bug Tracking631
14.4 Silicon Debug Principles631
14.5 Manufacturing Test Principles634
14.5.1 Fault Models635
14.5.2 Observability637
14.5.3 Controllability637
14.5.4 Repeatability637
14.5.5 Survivability637
14.5.6 Fault Coverage638
14.5.7 Automatic Test Pattern Generation(ATPG)638
14.5.8 Delay Fault Testing638
14.6 Design for Testability639
14.6.1 Ad Hoc Testing639
14.6.2 Scan Design640
14.6.3 Built-In Self-Test(BIST)642
14.6.4 IDDQ Testing645
14.6.5 Design for Manufacturability645
14.7 Boundary Scan646
14.8 Testing in a University Environment647
14.9 Pitfalls and Fallacies648
Summary655
Exercises655
Chapter 15 Fabrication657
15.1 Introduction657
15.2 CMOS Technologies658
15.2.1 Wafer Formation658
15.2.2 Photolimography659
15.2.3 Well and Channel Formation661
15.2.4 Silicon Dioxide(SiO2)663
15.2.5 Isolation664
15.2.6 Gate Oxide665
15.2.7 Gate and Source/Drain Formations666
15.2.8 Contacts and Metallization668
15.2.9 Passivation670
15.2.10 Metrology670
15.3 Layout Design Rules671
15.3.1 Design Rule Background671
15.3.2 Scribe Line and Other Stnctures674
15.3.3 MOSIS Scalable CMOS Design Rules675
15.3.4 Micron Design Rules676
15.4 CMOS Process Enhancements677
15.4.1 Transistors677
15.4.2 Interconnect680
15.4.3 Circuit Elements682
15.4.4 Beyond Conventional CMOS687
15.5 Technology-Related CAD Issues688
15.5.1 Design Rule Checking(DRC)689
15.5.2 Circuit Extraction690
15.6 Manufacturing Issues691
15.6.1 Antenna Rules691
15.6.2 LayerDensitv Rules692
15.6.3 Resolution Enhancement Rules692
15.6.4 Metal Slotting Rules693
15.6.5 Yield Enhancement Guidelines693
15.7 Pitfalls and Fallacies694
15.8 Historical Perspective695
Summary697
Exercises697
References699
Index731
Credits751