图书介绍
现代傅里叶分析 第2版 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (美)格拉法克斯(GrafakosL.) 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7510040603
- 出版时间:2011
- 标注页数:507页
- 文件大小:77MB
- 文件页数:523页
- 主题词:
PDF下载
下载说明
现代傅里叶分析 第2版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
6 Smoothness and Function Spaces1
6.1 Riesz and Bessel Potentials,Fractional Integrals1
6.1.1 Riesz Potentials2
6.1.2 Bessel Potentials6
Exercises9
6.2 Sobolev Spaces12
6.2.1 Definition and Basic Properties of General Sobolev Spaces13
6.2.2 Littlewood-Paley Characterization of Inhomogeneous Sobolev Spaces16
6.2.3 Littlewood-Paley Characterization of Homogeneous Sobolev Spaces20
Exercises22
6.3 Lipschitz Spaces24
6.3.1 Introduction to Lipschitz Spaces25
6.3.2 Littlewood-Paley Characterization of Homogeneous Lipschitz Spaces27
6.3.3 Littlewood-Paley Characterization of Inhomogeneous Lipschitz Spaces31
Exercises34
6.4 Hardy Spaces37
6.4.1 Definition of Hardy Spaces37
6.4.2 Quasinorm Equivalence of Several Maximal Functions40
6.4.3 Consequences of the Characterizations of Hardy Spaces53
6.4.4 Vector-Valued Hp and Its Characterizations56
6.4.5 Singular Integrals on Hardy Spaces58
6.4.6 The Littlewood-Paley Characterization of Hardy Spaces63
Exercises66
6.5 Besov-Lipschitz and Triebel-Lizorkin Spaces68
6.5.1 Introduction of Function Spaces68
6.5.2 Equivalence of Definitions71
Exercises76
6.6 Atomic Decomposition78
6.6.1 The Space of Sequences Fα,q p78
6.6.2 The Smooth Atomic Decomposition of Fα,q p78
6.6.3 The Nonsmooth Atomic Decomposition of Fα,q p82
6.6.4 Atomic Decomposition of Hardy Spaces86
Exercises90
6.7 Singular Integrals on Function Spaces93
6.7.1 Singular Integrals on the Hardy Space H193
6.7.2 Singular Integrals on Besov-Lipschitz Spaces96
6.7.3 Singular Integrals on Hp(Rn)96
6.7.4 A Singular Integral Characterization of H1(Rn)104
Exercises111
7 BMO and Carleson Measures117
7.1 Functions of Bounded Mean Oscillation117
7.1.1 Definition and Basic Properties of BMO118
7.1.2 The John-Nirenberg Theorem124
7.1.3 Consequences of Theorem 7.1.6128
Exercises129
7.2 Duality between H1 and BMO130
Exercises135
7.3 Nontangential Maximal Functions and Carleson Measures135
7.3.1 Definition and Basic Properties of Carleson Measures136
7.3.2 BMO Functions and Carleson Measures141
Exercises144
7.4 The Sharp Maximal Function146
7.4.1 Definition and Basic Properties of the Sharp Maximal Function146
7.4.2 A Good Lambda Estimate for the Sharp Function148
7.4.3 Interpolation Using BMO151
7.4.4 Estimates for Singular Integrals Involving the Sharp Function152
Exercises155
7.5 Commutators of Singular Integrals with BMO Functions157
7.5.1 An Orlicz-Type Maximal Function158
7.5.2 A Pointwise Estimate for the Commutator161
7.5.3 Lp Boundedness of the Commutator163
Exercises165
8 Singular Integrals of Nonconvolution Type169
8.1 General Background and the Role of BMO169
8.1.1 Standard Kernels170
8.1.2 Operators Associated with Standard Kernels175
8.1.3 Calderón-Zygmund Operators Acting on Bounded Functions179
Exercises181
8.2 Consequences of L2 Boundedness182
8.2.1 Weak Type(1,1)and Lp Boundedness ofSingular Integrals183
8.2.2 Boundedness of Maximal Singular Integrals185
8.2.3 H1→L1 and L∞→BMO Boundedness of Singular Integrals188
Exercises191
8.3 The T(1)Theorem193
8.3.1 Preliminaries and Statement of the Theorem193
8.3.2 The Proof of Theorem 8.3.3196
8.3.3 An Application209
Exercises211
8.4 Paraproducts212
8.4.1 Introduction to Paraproducts212
8.4.2 L2 Boundedness of Paraproducts214
8.4.3 Fundamental Properties of Paraproducts216
Exercises222
8.5 An Almost Orthogonality Lemma and Applications223
8.5.1 The Cotlar-Knapp-Stein Almost Orthogonality Lemma224
8.5.2 An Application227
8.5.3 Almost Orthogonality and the T(1)Theorem230
8.5.4 Pseudodifferential Operators233
Exercises236
8.6 The Cauchy Integral of Calderón and the T(b) Theorem238
8.6.1 Introduction of the Cauchy Integral Operator along a Lipschitz Curve239
8.6.2 Resolution of the Cauchy Integral and Reduction of Its L2 Boundednessto a Quadratic Estimate242
8.6.3 A Quadratic T(1)Type Theorem246
8.6.4 A T(b) Theorem and the L2 Boundedness of the Cauchy Integral250
Exercises253
8.7 Square Roots of Elliptic Operators256
8.7.1 Preliminaries and Statement of the Main Result256
8.7.2 Estimates for Elliptic Operators on Rn257
8.7.3 Reduction to a Quadratic Estimate260
8.7.4 Reduction to a Carleson Measure Estimate261
8.7.5 The T(b) Argument267
8.7.6 The Proof of Lemma 8.7.9270
Exercises275
9 Weighted Inequalities279
9.1 The Ap Condition279
9.1.1 Motivation for the Ap Condition280
9.1.2 Properties of Ap Weights283
Exercises291
9.2 Reverse H?lder Inequality and Consequences293
9.2.1 The Reverse H?lder Property of Ap Weights293
9.2.2 Consequences of the Reverse H?lder Property297
Exercises299
9.3 The A∞ Condition302
9.3.1 The Class of A∞ Weights302
9.3.2 Characterizations of A∞ Weights304
Exercises308
9.4 Weighted Norm Inequalities for Singular Integrals309
9.4.1 A Review of Singular Integrals309
9.4.2 A Good Lambda Estimate for Singular Integrals310
9.4.3 Consequences of the Good Lambda Estimate316
9.4.4 Necessity of the Ap Condition321
Exercises322
9.5 Further Properties of Ap Weights324
9.5.1 Factorization of Weights324
9.5.2 Extrapolation from Weighted Estimates on a Single Lp0325
9.5.3 Weighted Inequalities Versus Vector-Valued Inequalities332
Exercises335
10 Boundedness and Convergence of Fourier Integrals339
10.1 The Multiplier Problem for the Ball340
10.1.1 Sprouting of Triangles340
10.1.2 The counterexample343
Exercises350
10.2 Bochner-Riesz Means and the Carleson-Sj?lin Theorem351
10.2.1 The Bochner-Riesz Kernel and Simple Estimates351
10.2.2 The Carleson-Sj?lin Theorem354
10.2.3 The Kakeya Maximal Function359
10.2.4 Boundedness of a Square Function361
10.2.5 The Proof of Lemma 10.2.5363
Exercises366
10.3 Kakeya Maximal Operators368
10.3.1 Maximal Functions Associated with a Set of Directions368
10.3.2 The Boundedness of ?ΣN on Lp(R2)370
10.3.3 The Higher-Dimensional Kakeya Maximal Operator378
Exercises384
10.4 Fourier Transform Restriction and Bochner-Riesz Means387
10.4.1 Necessary Conditions for Rp→q(Sn-1) to Hold388
10.4.2 A Restriction Theorem for the Fourier Transform390
10.4.3 Applications to Bochner-Riesz Multipliers393
10.4.4 The Full Restriction Theoremon R2396
Exercises402
10.5 Almost Everywhere Convergence of Bochner-Riesz Means403
10.5.1 A Counterexample for the Maximal Bochner-Riesz Operator404
10.5.2 Almost Everywhere Summability of the Bochner-Riesz Means407
10.5.3 Estimates for Radial Multipliers411
Exercises419
11 Time-Frequency Analysis and the Carleson-Hunt Theorem423
11.1 Almost Everywhere Convergence of Fourier Integrals423
11.1.1 Preliminaries424
11.1.2 Discretization of the Carleson Operator428
11.1.3 Linearization of a Maximal Dyadic Sum432
11.1.4 Iterative Selection of Sets of Tiles with Large Mass and Energy434
11.1.5 Proof of the Mass Lemma 11.1.8439
11.1.6 Proof of Energy Lemma 11.1.9441
11.1.7 Proof of the Basic Estimate Lemma 11.1.10446
Exercises452
11.2 Distributional Estimates for the Carleson Operator456
11.2.1 The Main Theorem and Preliminary Reductions456
11.2.2 The Proof of Estimate(11.2.8)460
11.2.3 The Proof of Estimate(11.2.9)462
11.2.4 The Proof of Lemma 11.2.2463
Exercises474
11.3 The Maximal Carleson Operator and Weighted Estimates475
Exercises479
Glossary483
References487
Index501