图书介绍
数字通信 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![数字通信 英文版](https://www.shukui.net/cover/54/34604441.jpg)
- (英)格罗弗,(英)格兰特著 著
- 出版社: 北京:机械工业出版社
- ISBN:9787111316695
- 出版时间:2010
- 标注页数:1027页
- 文件大小:394MB
- 文件页数:1075页
- 主题词:数字通信-英文
PDF下载
下载说明
数字通信 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Digital communications overview1
1.1 Electronic communications1
1.2 Sources and sinks of information4
1.3 Digital communications equipment6
1.3.1 CODECs6
1.3.2 Source,security and error control coding7
1.3.3 Multiplexers7
1.3.4 MODEMs8
1.3.5 Multiple accessing8
1.4 Radio receivers8
1.5 Signal transmission9
1.5.1 Line transmission9
1.5.2 Radio transmission13
1.6 Switching and networks14
1.7 Advantages of digital communications15
1.8 Summary16
Part One Signals and systems theory19
2 Periodic and transient signals21
2.1 Introduction21
2.2 Periodic signals22
2.2.1 Sinusoids,cisoids and phasors22
2.2.2 Fourier series27
2.2.3 Conditions for existence,convergence and Gibb's phenomenon41
2.2.4 Bandwidth,rates of change,sampling and aliasing44
2.3 Transient signals47
2.3.1 Fourier transforms47
2.3.2 Practical calculation of Fourier transforms49
2.3.3 Fourier transform pairs51
2.3.4 Fourier transform theorems and convolution56
2.4 Power and energy spectra65
2.5 Generalised orthogonal function expansions67
2.5.1 Review of vectors67
2.5.2 Vector interpretation of waveforms70
2.5.3 Orthogonal and orthonormal signals72
2.5.4 Evaluation of basis function coefficients74
2.5.5 Error energy and completeness75
2.6 Correlation functions77
2.7 Summary83
2.8 Problems84
3 Random signals and noise86
3.1 Introduction86
3.2 Probability theory86
3.2.1 Conditional probabilities,joint probabilities and Bayes's rule88
3.2.2 Statistical independence89
3.2.3 Discrete probability of errors in a data block90
3.2.4 Cumulative distributions and probability density functions92
3.2.5 Moments,percentiles and modes96
3.2.6 Joint and marginal pdfs,correlation and covariance101
3.2.7 Joint moments,correlation and covariance104
3.2.8 Joint Gaussian random variables107
3.2.9 Addition of random variables and the central limit theorem108
3.3 Random processes112
3.3.1 Stationarity and ergodicity114
3.3.2 Strict and loose sense Gaussian processes115
3.3.3 Autocorrelation and power spectral density117
3.3.4 Signal memory,decorrelation time and white noise121
3.3.5 Cross correlation of random processes122
3.4 Summary122
3.5 Problems124
4 Linear systems128
4.1 Introduction128
4.2 Linear systems128
4.2.1 Properties of linear systems129
4.2.2 Importance of linear systems130
4.3 Time domain description of linear systems133
4.3.1 Linear differential equations133
4.3.2 Discrete signals and matrix algebra134
4.3.3 Continuous signals,convolution and impulse response134
4.3.4 Physical interpretation of y(t)=h(t)*x(t)136
4.3.5 Step response138
4.4 Frequency domain description141
4.5 Causality and the Hilbert transform144
4.6 Random signals and linear systems147
4.6.1 Power spectral densities and linear systems147
4.6.2 Noise bandwidth149
4.6.3 Pdf of filtered noise149
4.6.4 Spectrum analysers151
4.7 Non-linear systems and transformation of random variables152
4.7.1 Rayleigh pdf153
4.7.2 Chi-square distributions155
4.8 Summary157
4.9 Problems157
Part Two Digital communications principles161
5 Sampling,multiplexing and PCM163
5.1 Introduction163
5.2 Pulse modulation163
5.3 Sampling165
5.3.1 Natural and flat topped sampling166
5.3.2 Baseband sampling and Nyquist's criterion167
5.3.3 Aliasing168
5.3.4 Practical sampling,reconstruction and signal to distortion ratio169
5.3.5 Bandpass sampling173
5.4 Analogue pulse multiplexing176
5.5 Quantised PAM179
5.6 Signal to quantisation noise ratio(SNqR)181
5.7 Pulse code modulation183
5.7.1 SNqR for linear PCM183
5.7.2 SNR for decoded PCM185
5.7.3 Companded PCM188
5.7.4 PCM multiplexing191
5.8 Bandwidth reduction techniques192
5.8.1 Delta PCM193
5.8.2 Differential PCM193
5.8.3 Adaptive DPCM195
5.8.4 Delta modulation196
5.8.5 Adaptive delta modulation199
5.9 Summary201
5.10 Problems202
6 Baseband transmission and line coding204
6.1 Introduction204
6.2 Baseband centre point detection204
6.2.1 Baseband binary error rates in Gaussian noise205
6.2.2 Multilevel baseband signalling209
6.3 Error accumulation over multiple hops211
6.4 Line coding214
6.4.1 Unipolar signalling217
6.4.2 Polar signalling219
6.4.3 Dipolar signalling219
6.4.4 Bipolar alternate mark inversion signalling219
6.4.5 Pulse synchronisation and HDBn coding220
6.4.6 Coded mark inversion(CMI)220
6.4.7 nBmT coding220
6.5 Multiplex telephony221
6.6 Digital signal regeneration222
6.6.1 PCM line codes223
6.6.2 Equalisation224
6.6.3 Eye diagrams226
6.6.4 Crosstalk228
6.7 Symbol timing recovery(STR)230
6.8 Repeater design232
6.9 Digital transmission in local loop232
6.10 Summary236
6.11 Problems236
7 Decision theory238
7.1 Introduction238
7.2 A priori,conditional and a posteriori probabilities239
7.3 Symbol transition matrix240
7.3.1 Binary symmetric channel240
7.4 Bayes's decision criterion243
7.4.1 Decision costs243
7.4.2 Expected conditional decision costs243
7.4.3 Optimum decision rule244
7.4.4 Optimum decision threshold voltage245
7.4.5 Average unconditional decision cost246
7.5 Neyman-Pearson decision criterion249
7.6 Summary250
7.7 Problems251
8 Optimum filtering for transmission and reception253
8.1 Introduction253
8.2 Pulse shaping for optimum transmissions253
8.2.1 Intersymbol interference(ISI)254
8.2.2 Bandlimiting of rectangular pulses254
8.2.3 ISI-free signals255
8.2.4 Nyquist's vestigial symmetry theorem259
8.2.5 Raised cosine filtering260
8.2.6 Nyquist filtering for rectangular pulses263
8.2.7 Duobinary signalling263
8.2.8 Partial response signalling270
8.3 Pulse filtering for optimum reception271
8.3.1 Matched filtering272
8.3.2 Correlation detection276
8.3.3 Decision instant SNR281
8.3.4 BER performance of optimum receivers284
8.3.5 Comparison of baseband matched filtering and centre point detection286
8.3.6 Differences between matched filtering and correlation287
8.4 Root raised cosine filtering288
8.5 Equalisation289
8.6 Summary292
8.7 Problems293
9 Information theory,source coding and encryption295
9.1 Introduction295
9.2 Information and entropy296
9.2.1 The information measure296
9.2.2 Multisymbol alphabets297
9.2.3 Commonly confused entities298
9.2.4 Entropy of a binary source298
9.3 Conditional entropy and redundancy299
9.4 Information loss due to noise302
9.5 Source coding305
9.5.1 Code efficiency305
9.5.2 Decoding variable length codewords306
9.6 Variable length coding308
9.6.1 Huffman coding308
9.7 Source coding examples310
9.7.1 Source coding for speech signals311
9.7.2 High quality speech coders314
9.7.3 Audio coders315
9.7.4 String coding318
9.8 Data encryption319
9.8.1 The locked box analogy319
9.8.2 Secrecy320
9.8.3 Substitution and permutation321
9.8.4 Confusion,diffusion and the unicity distance322
9.8.5 Block ciphers and stream ciphers324
9.8.6 Product ciphers325
9.8.7 Data encryption standard326
9.8.8 Public key encryption334
9.8.9 Hash functions and OAEP339
9.8.10 Hybrid public key/private key encryption and PGP339
9.9 Authentication341
9.10 Integrity342
9.11 Digital signatures342
9.12 Summary342
9.13 Problems344
10 Error control coding347
10.1 Introduction347
10.1.1 Error rate control concepts349
10.1.2 Threshold phenomenon350
10.1.3 Applications for error control351
10.2 Hamming distance and codeword weight351
10.3 (n,k)block codes352
10.3.1 Single parity check code352
10.4 Probability of error in n-digit codewords356
10.5 Linear group codes356
10.5.1 Members of the group code family357
10.5.2 Performance prediction357
10.5.3 Error detection and correction capability358
10.6 Nearest neighbour decoding of block codes359
10.6.1 Hamming bound359
10.7 Syndrome decoding360
10.7.1 The generator matrix360
10.7.2 Syndrome table for error correction361
10.8 Cyclic codes364
10.8.1 Polynomal codeword generation365
10.8.2 Interleaving368
10.9 Encoding of convolutional codes369
10.9.1 Tree diagram representation370
10.9.2 Trellis diagram371
10.9.3 State transition diagram371
10.10 Viterbi decoding of convolutional codes372
10.10.1 Decoding window375
10.10.2 Sequential decoding376
10.11 Practical coders377
10.12 Concatenated coding and turbo codes378
10.12.1 Serially concatenated codes379
10.12.2 Parallel-concatenated recursive systematic convolutional codes380
10.12.3 Turbo decoding382
10.12.4 Turbo code performance385
10.12.5 Other applications of the turbo principle and LDPC codes386
10.13 Summary387
10.14 Problems388
11 Bandpass modulation of a carrier signal390
11.1 Introduction390
11.2 Spectral and power efficiency391
11.3 Binary IF modulation391
11.3.1 Binary amplitude shift keying(and on-off keying)391
11.3.2 Binary phase shift keying(and phase reversal keying)395
11.3.3 Binary frequency shift keying399
11.3.4 BFSK symbol correlation and Sunde's FSK402
11.3.5 Comparison of binary shift keying techniques405
11.3.6 Carrier recovery,phase ambiguity and DPSK408
11.4 Modulation techniques with increased spectral efficiency410
11.4.1 Channel capacity411
11.4.2 M-symbol phase shift keying412
11.4.3 Amplitude/phase keying and quadrature amplitude modulation416
11.4.4 Quadrature phase shift keying(QPSK)and offset QPSK421
11.4.5 Minimum shift keying428
11.4.6 Gaussian MSK431
11.4.7 Trellis coded modulation431
11.5 Power efficient modulation techniques437
11.5.1 Multidimensional signalling and MFSK437
11.5.2 Orthogonal frequency division multiplex(OFDM)442
11.5.3 Optimum constellation point packing445
11.5.4 Optimum constellation point boundaries446
11.6 Data modems447
11.7 Summary448
11.8 Problems449
12 System noise and communications link budgets452
12.1 Introduction452
12.2 Physical aspects of noise452
12.2.1 Thermal noise453
12.2.2 Non-thermal noise457
12.2.3 Combining white noise sources460
12.3 System noise calculations463
12.3.1 Noise temperature463
12.3.2 Noise temperature of cascaded subsystems465
12.3.3 Noise factor and noise figure468
12.4 Radio communication link budgets471
12.4.1 Antenna gain,effective area and efficiency471
12.4.2 Free space and plane earth signal budgets476
12.4.3 Antenna temperature and radio noise budgets482
12.4.4 Receiver equivalent input CNR485
12.4.5 Multipath fading and diversity reception486
12.5 Fibre optic transmission links488
12.5.1 Fibre types489
12.5.2 Fibre transmission systems491
12.5.3 Optical sources492
12.5.4 Optical detectors492
12.5.5 Optical amplifiers492
12.5.6 Optical repeater and link budgets494
12.5.7 Optical FDM496
12.5.8 Optical signal routers496
12.6 Summary496
12.7 Problems497
13 Communication systems simulation500
13.1 Introduction500
13.2 Equivalent complex baseband representations502
13.2.1 Equivalent baseband signals502
13.2.2 Equivalent baseband systems503
13.2.3 Equivalent baseband system output505
13.2.4 Equivalent baseband noise509
13.3 Sampling and quantisation512
13.3.1 Sampling equivalent baseband signals512
13.3.2 Quantisation514
13.4 Modelling of signals,noise and systems514
13.4.1 Random numbers514
13.4.2 Random digital symbol streams516
13.4.3 Noise and interference520
13.4.4 Time invariant linear systems521
13.4.5 Non-linear and time varying systems522
13.5 Transformation between time and frequency domains523
13.5.1 DFT524
13.5.2 DFS526
13.5.3 DFS spectrum and rearrangement of spectral lines526
13.5.4 Conservation of information527
13.5.5 Phasor interpretation of DFS527
13.5.6 Inverse DFS and DFT528
13.5.7 DFT accuracy529
13.6 Discrete and cyclical convolution535
13.7 Estimation of BER538
13.7.1 Monte Carlo simulation538
13.7.2 Quasi-analytic simulation540
13.8 Summary546
Part Three Applications549
14 Fixed-point microwave communications551
14.1 Introduction551
14.2 Terrestrial microwave links551
14.2.1 Analogue systems553
14.2.2 Digital systems554
14.2.3 LOS link design556
14.2.4 Other propagation considerations for terrestrial links565
14.3 Fixed-point satellite communications572
14.3.1 Satellite frequency bands and orbital spacing574
14.3.2 Earth station look angles and satellite range575
14.3.3 Satellite link budgets577
14.3.4 Slant path propagation considerations583
14.3.5 Analogue FDM/FM/FDMA trunk systems589
14.3.6 Digital TDM/PSK/TDMA trunk systems593
14.3.7 DA-TDMA,DSI and random access systems598
14.3.8 Economics of satellite communications599
14.3.9 VSAT systems599
14.3.10 Satellite switched TDMA and onboard signal processing599
14.4 Summary601
14.5 Problems602
15 Mobile and cellular radio605
15.1 Introduction605
15.1.1 Private mobile radio605
15.1.2 Radio paging systems607
15.2 Mobile radio link budget and channel characteristics607
15.2.1 Prediction of median signal strength608
15.2.2 Slow and fast fading610
15.2.3 Dispersion,frequency selective fading and coherence bandwidth611
15.2.4 Multipath modelling and simulation612
15.3 Nationwide cellular radio communications614
15.3.1 Introduction614
15.3.2 Personal cordless communications615
15.3.3 Analogue cellular radio communication616
15.3.4 Cell sizes616
15.3.5 System configuration619
15.4 Digital TDMA terrestrial cellular systems620
15.4.1 TDMA systems620
15.4.2 TDMA data format and modulation621
15.4.3 Speech and channel coding622
15.4.4 Other operational constraints623
15.4.5 Trunked radio for paramilitary use624
15.5 Code division multiple access(CDMA)624
15.5.1 The CDMA concept624
15.5.2 CDMA receiver design626
15.5.3 Spreading sequence design629
15.5.4 Data modulation633
15.5.5 CDMA multipath processing633
15.5.6 The cdmaOne system634
15.5.7 Frequency hopped transmission638
15.6 Mobile satellite based systems640
15.7 Third generation mobile cellular standards642
15.7.1 Mobile data transmission642
15.7.2 3G systems643
15.7.3 4G or 3G evolution645
15.8 Summary645
15.9 Problems646
16 Video transmission and storage647
16.1 Introduction647
16.2 Colour representation648
16.3 Conventional TV transmission systems650
16.3.1 PAL encoding650
16.3.2 PAL television receiver652
16.3.3 Other encoding schemes653
16.4 High definition TV653
16.4.1 What is HDTV?653
16.4.2 Transmissions654
16.5 Digital video655
16.6 Video data compression656
16.6.1 Run length coding657
16.6.2 Conditional replenishment658
16.6.3 Transform coding658
16.7 Compression standards659
16.7.1 COST 211659
16.7.2 JPEG660
16.7.3 MPEG-1 and MPEG-2662
16.7.4 MPEG-4 and MPEG-7664
16.7.5 H.261,H.263 and H.264665
16.7.6 Model based coding666
16.8 Digital video broadcast668
16.9 Packet video669
16.10 Other multimedia services670
16.11 Summary670
16.12 Problems672
Part Four Networks673
17 Network applications,topologies and architecture675
17.1 Introduction675
17.2 Network applications676
17.3 Network function678
17.4 Network classification678
17.5 Switched network topologies and representation680
17.5.1 Star or hub681
17.5.2 Tree682
17.5.3 Mesh682
17.5.4 Matrix representation683
17.6 Generic network switching philosophies684
17.6.1 Circuit switching684
17.6.2 Message switching685
17.6.3 Packet switching685
17.7 Broadcast network topologies688
17.7.1 Bus or multidrop688
17.7.2 Passive ring689
17.7.3 Active ring690
17.8 Transmission media691
17.9 Interconnected networks691
17.10 User and provider network views693
17.11 Connection-oriented and connectionless services696
17.12 Layered network architectures696
17.12.1 ISO OSI protocol reference model697
17.12.2 Network layers in use700
17.13 Summary702
17.14 Problems702
18 Network protocols704
18.1 Introduction704
18.2 Physical layer704
18.2.1 A physical layer protocol-X.21705
18.3 Data-link layer709
18.3.1 Synchronisation710
18.3.2 Error control713
18.3.3 Flow control727
18.3.4 A data-link protocol-HDLC730
18.4 Network layer733
18.4.1 Routing734
18.4.2 Congestion control740
18.4.3 Error control741
18.4.4 Quality of service741
18.4.5 A connection-oriented network level protocol-X.25 PLP741
18.4.6 A connectionless network level protocol(CLNP)745
18.4.7 Use of primitives750
18.5 Transport layer752
18.5.1 Message segmentation and reassembly753
18.5.2 Multiplexing and parallel virtual circuit transmission753
18.5.3 End-to-end error and flow control754
18.5.4 Use of well known and ephemeral ports754
18.5.5 A transport level protocol-TP4754
18.6 Session layer759
18.6.1 Session connection,maintenance and release759
18.6.2 Dialogue supervision760
18.6.3 Recovery760
18.6.4 A session level protocol-ISO-SP760
18.7 Presentation layer764
18.7.1 Translation between local and transfer syntaxes764
18.2 Abstract syntax notation 1 (ASN.1)765
18.7.3 A presentation level protocol-ISO-PP766
18.8 Application layer766
18.9 Non-OSI protocol stacks766
18.10 Summary767
18.11 Problems769
19 Network performance using queueing theory(M.E.Woodward)771
19.1 Introduction771
19.1.1 The arrival process772
19.1.2 Queueing systems775
19.2 The M/M/1 queue776
19.2.1 The equilibrium probabilities776
19.2.2 Performance measures778
19.3 The M/M/1/N queue780
19.3.1 General Markovian queueing equations782
19.3.2 The M/M/N/N queue786
19.3.3 The M/M/N/N/K queue788
19.3.4 M/M/N/N+j queue(Erlang-C equation)789
19.3.5 Distribution of waiting times792
19.4 M/M/N/K/K queue:queueing behaviour in a mobile communication system793
19.4.1 Speech source model794
19.4.2 Equilibrium probability794
19.5 Summary796
19.6 Problems797
20 Switched networks and WANs799
20.1 Introduction799
20.2 WAN characteristics and classification800
20.3 Application of graph theory to core networks802
20.3.1 Topology,cost and capacity matrices802
20.3.2 Network capacity803
20.3.3 Network connectivity808
20.4 The UK public network811
20.4.1 The traditional analogue network812
20.4.2 The modern digital network813
20.5 Multiplexing816
20.5.1 The plesiochronous digital hierarchy816
20.5.2 SDH and SONET824
20.6 Circuit switching836
20.6.1 Space switching836
20.6.2 Time switching836
20.6.3 Time-space-time and space-time-space switching838
20.6.4 Multi-stage space switches839
20.6.5 Switch connectivity845
20.6.6 Concentration and expansion845
20.6.7 Switch design846
20.6.8 Probability of blocking849
20.6.9 Circuit switched data over the PSTN851
20.7 Packet switching855
20.7.1 Packet switched data over the PDN856
20.7.2 Frame relay861
20.8 Integrated services digital network(ISDN)862
20.8.1 ISDN structure862
20.8.2 Basic and primary rate access863
20.8.3 ISDN services865
20.9 Signalling866
20.9.1 In-channel and common channel signalling867
20.9.2 Signalling system No.7868
20.10 Asynchronous transfer mode and the broadband ISDN870
20.10.1 Transport mechanism871
20.10.2 Service classes873
20.10.3 Connection admission control874
20.10.4 Access protocols875
20.10.5 Synchronous versus asynchronous transfer modes875
20.10.6 Transition from ATM to IP876
20.11 Access technologies877
20.11.1 Digital subscriber line877
20.11.2 Fibre881
20.11.3 Cable884
20.11.4 Broadband fixed wireless access(IEEE 802.16)890
20.11.5 Comparison of access network technologies903
20.11.6 Convergence of access network services903
20.12 Summary906
20.13 Problems908
21 Broadcast networks and LANs911
21.1 Introduction911
21.2 LAN topologies912
21.3 LAN protocol stack912
21.3.1 Fixed access multiplexing913
21.3.2 Polling913
21.3.3 Token passing913
21.3.4 Contention914
21.4 Popular wired LAN standards915
21.4.1 Ethernet(IEEE 802.3)916
21.4.2 Token ring(IEEE 802.5)923
21.5 Wireless LANs933
21.5.1 WLAN(IEEE 802.11)934
21.5.2 MIMO techniques942
21.5.3 HIP ERLAN947
21.6 Metropolitan area networks951
21.6.1 Fibre distributed data interface951
21.6.2 Distributed queue dual bus955
21.6.3 ATM MANs/LANs958
21.7 Wireless personal area networks960
21.7.1 Bluetooth(IEEE 802.15.1)960
27.2 Other IEEE 802.15 PAN technologies969
21.8 Home networking technologies974
21.8.1 Wired home networks975
21.8.2 Wireless home networks976
21.9 Residential gateways978
21.10 Summary979
21.11 Problems981
Appendix A.Tabulated values of the error function982
Appensix B.Summations of common series985
Appendix C.International Alphabet No.5(ASCII code set)986
Appendix D.LAN/MAN examples987
Standards989
WWW addresses993
Bibliography995
Index1011