图书介绍

离散几何讲义PDF|Epub|txt|kindle电子书版本网盘下载

离散几何讲义
  • (捷克)马陶塞克著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510037627
  • 出版时间:2011
  • 标注页数:481页
  • 文件大小:90MB
  • 文件页数:502页
  • 主题词:离散数学:几何学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

离散几何讲义PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Convexity1

1.1 Linear and Affine Subspaces,General Position1

1.2 Convex Sets,Convex Combinations,Separation5

1.3 Radon's Lemma and Helly's Theorem9

1.4 Centerpoint and Ham Sandwich14

2 Lattices and Minkowski's Theorem17

2.1 Minkowski's Theorem17

2.2 General Lattices21

2.3 An Application in Number Theory27

3 Convex Independent Subsets29

3.1 The Erd?s-Szekeres Theorem30

3.2 Horton Sets34

4 Incidence Problems41

4.1 Formulation41

4.2 Lower Bounds:Incidences and Unit Distances51

4.3 Point-Line Incidences via Crossing Numbers54

4.4 Distinct Distances via Crossing Numbers59

4.5 Point-Line Incidences via Cuttings64

4.6 A Weaker Cutting Lemma70

4.7 The Cutting Lemma:A Tight Bound73

5 Convex Polytopes77

5.1 Geometric Duality78

5.2 H-Polytopes and V-Polytopes82

5.3 Faces of a Convex Polytope86

5.4 Many Faces:The Cyclic Polytopes96

5.5 The Upper Bound Theorem100

5.6 The Gale Transform107

5.7 Voronoi Diagrams115

6 Number of Faces in Arrangements125

6.1 Arrangements of Hyperplanes126

6.2 Arrangements of Other Geometric Objects130

6.3 Number of Vertices of Level at Most k140

6.4 The Zone Theorem146

6.5 The Cutting Lemma Revisited152

7 Lower Envelopes165

7.1 Segments and Davenport-Schinzel Sequences165

7.2 Segments:Superlinear Complexity of the Lower Envelope169

7.3 More on Davenport-Schinzel Sequences173

7.4 Towards the Tight Upper Bound for Segments178

7.5 Up to Higher Dimension:Triangles in Space182

7.6 Curves in the Plane186

7.7 Algebraic Surface Patches189

8 Intersection Patterns of Convex Sets195

8.1 The Fractional Helly Theorem195

8.2 The Colorful Carathéodory Theorem198

8.3 Tverberg's Theorem200

9 Geometric Selection Theorems207

9.1 A Point in Many Simplices:The First Selection Lemma207

9.2 The Second Selection Lemma210

9.3 Order Types and the Same-Type Lemma215

9.4 A Hypergraph Regularity Lemma223

9.5 A Positive-Fraction Selection Lemma228

10 Transversals and Epsilon Nets231

10.1 General Preliminaries:Transversals and Matchings231

10.2 Epsilon Nets and VC-Dimension237

10.3 Bounding the VC-Dimension and Applications243

10.4 Weak Epsilon Nets for Convex Sets251

10.5 The Hadwiger-Debrunner(p,q)-Problem255

10.6 A(p,q)-Theorem for Hyperplane Transversals259

11 Attempts to Count k-Sets265

11.1 Definitions and First Estimates265

11.2 Sets with Many Halving Edges273

11.3 The Lovász Lemma and Upper Bounds in All Dimensions277

11.4 A Better Upper Bound in the Plane283

12 Two Applications of High-Dimensional Polytopes289

12.1 The Weak Perfect Graph Conjecture290

12.2 The Brunn-Minkowski Inequality296

12.3 Sorting Partially Ordered Sets302

13 Volumes in High Dimension311

13.1 Volumes,Paradoxes of High Dimension,and Nets311

13.2 Hardness of Volume Approximation315

13.3 Constructing Polytopes of Large Volume322

13.4 Approximating Convex Bodies by Ellipsoids324

14 Measure Concentration and Almost Spherical Sections329

14.1 Measure Concentration on the Sphere330

14.2 Isoperimetric Inequalities and More on Concentration333

14.3 Concentration of Lipschitz Functions337

14.4 Almost Spherical Sections:The First Steps341

14.5 Many Faces of Symmetric Polytopes347

14.6 Dvoretzky's Theorem348

15 Embedding Finite Metric Spaces into Normed Spaces355

15.1 Introduction:Approximate Embeddings355

15.2 The Johnson-Lindenstrauss Flattening Lemma358

15.3 Lower Bounds By Counting362

15.4 A Lower Bound for the Hamming Cube369

15.5 A Tight Lower Bound via Expanders373

15.6 Upper Bounds for ?∞-Embeddings385

15.7 Upper Bounds for Euclidean Embeddings389

What Was It About?An Informal Summary401

Hints to Selected Exercises409

Bibliography417

Index459

热门推荐