图书介绍
有限元 原书第3版 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![有限元 原书第3版 英文版](https://www.shukui.net/cover/16/30367797.jpg)
- (德)布拉艾斯著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510042850
- 出版时间:2012
- 标注页数:365页
- 文件大小:10MB
- 文件页数:382页
- 主题词:有限元-英文
PDF下载
下载说明
有限元 原书第3版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter Ⅰ Introduction1
1.Examples and Classification of PDE's2
Examples2
Classification of PDE's8
Well-posed problems9
Problems10
2.The Maximum Principle12
Examples13
Corollaries14
Problem15
3.Finite Difference Methods16
Discretization16
Discrete maximum principle19
Problem21
4.A Convergence Theory for Difference Methods22
Consistency22
Local and global error22
Limits of the con-vergence theory24
Problems26
Chapter Ⅱ Conforming Finite Elements27
1.Sobolev Spaces28
Introduction to Sobolev spaces29
Friedrichs' inequality30
Possible singularities of H1 functions31
Compact imbeddings32
Problems33
2.Variational Formulation of Elliptic Boundary-Value Problems of Second Order34
Variational formulation35
Reduction to homogeneous bound-ary conditions36
Existence of solutions38
Inhomogeneous boundary conditions42
Problems42
3.The Neumann Boundary-Value Problem.A Trace Theorem44
Ellipticity in H144
Boundary-value problems with natural bound-ary conditions45
Neumann boundary conditions46
Mixed boundary conditions47
Proof of the trace theorem48
Practi-cal consequences of the trace theorem50
Problems52
4.The RitzGalerkin Method and Some Finite Elements53
Model problem56
Problems58
5.Some Standard Finite Elements60
Requirements on the meshes61
Significance of the differentia-bility properties62
Triangular elements with complete polyno-mials64
Remarks on C1 elements67
Bilinear elements68
Quadratic rectangular elements69
Affine families70
Choice of an element74
Problems74
6.Approximation Properties76
The BrambleHilbert lemma77
Triangular elements with com-plete polynomials78
Bilinear quadrilateral elements81
In-verse estimates83
Clément's interpolation84
Appendix:On the optimality of the estimates85
Problems87
7.Error Bounds for Elliptic Problems of Second Order89
Remarks on regularity89
Error bounds in the energy norm90
L2 estimates91
A simple L∞ estimate93
The L2-projector94
Problems95
8.Computational Considerations97
Assembling the stiffness matrix97
Static condensation99
Complexity of setting up the matrix100
Effect on the choice of a grid 100 Local mesh refinement100
Implementation of the Neumann boundary-value problem102
Problems103
Chapter Ⅲ Nonconforming and Other Methods105
1.Abstract Lenmas and a Simple Boundary Approximation106
Generalizations of Céa's lemma106
Duality methods108
The Crouzeix-Raviart element109
A simple approximation to curved boundaries112
Modifications of the duality argument114
Problems116
2.Isoparametric Elements117
Isoparametric triangular elements117
Isoparametric quadrilateral elements119
Problems121
3.Further Tools from Functional Analysis122
Negative norms122
Adjoint operators124
An abstract exis-tence theorem124
An abstract convergence theorem126
Proof of Theorem 3.4127
Problems128
4.Saddle Point Problems129
Saddle points and minima129
The inf-sup condition130
Mixed finite element methods134
Fortin interpolation136
Saddle point problems with penalty term138
Typical applications141
Problems142
5.Mixed Methods for the Poisson Equation145
The Poisson equation as a mixed problem145
The Raviart-Thomas element148
Interpolation by Raviart-Thomas elements149
Implementation and postprocessing152
Mesh-dependent norms for the Raviart-Thomas element153
The softening be-haviour of mixed methods154
Problems156
6.The Stokes Equation157
Variational formulation158
The inf-sup condition159
Nearly incompressible flows161
Problems161
7.Finite Elements for the Stokes Problem162
An instable element162
The Taylor-Hood element167
The MINI element168
The divergence-free nonconforming P1 ele-ment170
Problems171
8.A Posteriori Error Estimates172
Residual estimators174
Lower estimates176
Remark on other estimators179
Local mesh refinement and convergence179
9.A Posteriori Error Estimates via the Hypercircle Method181
Chapter Ⅳ The Conjugate Gradient Method186
1.Classical Iterative Methods for Solving Linear Systems187
Stationary linear processes187
The Jacobi and Gauss-Seidel methods189
The model problem192
Overrelaxation193
Problems195
2.Gradient Methods196
The general gradient method196
Gradient methods and quadratic functions197
Convergence behavior in the case of large condition numbers199
Problems200
3.Conjugate Gradient and the Minimal Residual Method201
The CG algorithm203
Analysis of the CG method as an optimal method196
The minimal residual method207
Indefinite and unsymmetric matrices208
Problems209
4.Preconditioning210
Preconditioning by SSOR213
Preconditioning by ILU214
Remarks on parallelization216
Nonlinear problems217
Prob-lems218
5.Saddle Point Problems221
The Uzawa algorithm and its variants221
An alternative223
Problems224
Chapter Ⅴ Multigrid Methods225
1.Multigrid Methods for Variational Problems226
Smoothing properties of classical iterative methods226
The multi-grid idea227
The algorithm228
Transfer between grids232
Problems235
2.Convergence of Multigrid Methods237
Discrete norms238
Connection with the Sobolev norm240
Approximation property242
Convergence proof for the two-grid method244
An alternative short proof245
Some variants245
Problems246
3.Convergence for Several Levels248
A recurrence formula for the W-cycle248
An improvement for the energy norm249
The convergence proof for the V-cycle251
Problems254
4.Nested Iteration255
Computation of starting values255
Complexity257
Multi-grid methods with a small number of levels258
The CASCADE algorithm259
Problems260
5.Multigrid Analysis via Space Decomposition261
Schwarz alternating method262
Assumptions265
Direct con-sequences266
Convergence of multiplicative methods267
Verification of A1269
Local mesh refinements270
Problems271
6.Nonlinear Problems272
The multigrid-Newton method273
The nonlinear multigrid method274
Starting values276
Problems277
Chapter Ⅵ Finite Elements in Solid Mechanics278
1.Introduction to Elasticity Theory279
Kinematics279
The equilibrium equations281
The Piola trans-form283
Constitutive Equations284
Linear material laws288
2.Hyperelastic Materials290
3.Linear Elasticity Theory293
The variational problem293
The displacement formulation297
The mixed method of Hellinger and Reissner300
The mixed method of Hu and Washizu302
Nearly incompressible material304
Locking308
Locking of the Timoshenko beam and typical remedies310
Problems314
4.Membranes315
Plane stress states315
Plane strain states316
Membrane ele-ments316
The PEERS element317
Problems320
5.Beams and Plates:The Kirchhoff Plate323
The hypotheses323
Note on beam models326
Mixed methods for the Kirchoff plate326
DKT elements328
Problems334
6.The Mindlin-Reissner Plate335
The Helmholtz decomposition336
The mixed formulation with the Helmholtz decomposition338
MITC elements339
The model without a Helmholtz decomposition343
Problems346
References348
Index361