图书介绍
COMPUTATIONAL METHODS FOR ELECTROMAGNETIC PHENOMENA ELECTROSTATICS IN SOLVATIONPDF|Epub|txt|kindle电子书版本网盘下载
![COMPUTATIONAL METHODS FOR ELECTROMAGNETIC PHENOMENA ELECTROSTATICS IN SOLVATION](https://www.shukui.net/cover/3/34122621.jpg)
- SCATTERING 著
- 出版社: CAMBRIDGE UNIVERSITY PRESS
- ISBN:
- 出版时间:2013
- 标注页数:444页
- 文件大小:148MB
- 文件页数:462页
- 主题词:
PDF下载
下载说明
COMPUTATIONAL METHODS FOR ELECTROMAGNETIC PHENOMENA ELECTROSTATICS IN SOLVATIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ Electrostatics in solvation1
1 Dielectric constant and fluctuation formulae for molecular dynamics3
1.1 Electrostatics of charges and dipoles3
1.2 Polarization P and displacement flux D5
1.2.1 Bound charges induced by polarization6
1.2.2 Electric field Epol(r) of a polarization density P(r)7
1.2.3 Singular integral expressions of Epol(r) inside dielectrics9
1.3 Clausius-Mossotti and Onsager formulae for dielectric constant9
1.3.1 Clausius-Mossotti formula for non-polar dielectrics9
1.3.2 Onsager dielectric theory for dipolar liquids11
1.4 Statistical molecular theory and dielectric fluctuation formulae16
1.4.1 Statistical methods for polarization density change ΔP18
1.4.2 Classical electrostatics for polarization density change ΔP20
1.4.3 Fluctuation formulae for dielectric constant e21
1.5 Appendices23
1.5.1 Appendix A: Average field of a charge in a dielectric sphere23
1.5.2 Appendix B: Electric field due to a uniformly polarized sphere24
1.6 Summary25
2 Poisson-Boltzmann electrostatics and analytical approximations26
2.1 Poisson-Boltzmann (PB) model for electrostatic solvation26
2.1.1 Debye-Hiickel Poisson-Boltzmann theory27
2.1.2 Helmholtz double layer and ion size effect30
2.1.3 Electrostatic solvation energy34
2.2 Generalized Born (GB) approximations of solvation energy36
2.2.1 Still’s generalized Born formulism37
2.2.2 Integral expression for Born radii37
2.2.3 FFT-based algorithm for the Born radii39
2.3 Method of images for reaction fields44
2.3.1 Methods of images for simple geometries45
2.3.2 Image methods for dielectric spheres47
2.3.3 Image methods for dielectric spheres in ionic solvent53
2.3.4 Image methods for multi-layered media55
2.4 Summary59
3 Numerical methods for Poisson-Boltzmann equations60
3.1 Boundary element methods (BEMs)60
3.1.1 Cauchy principal value (CPV) and Hadamard finite part(p.f.)61
3.1.2 Surface integral equations for the PB equations65
3.1.3 Computations of CPV and Hadamard p.f. and collocation BEMs71
3.2 Finite element methods (FEMs)82
3.3 Immersed interface methods (IIMs)85
3.4 Summary88
4 Fast algorithms for long-range interactions89
4.1 Ewald sums for charges and dipoles89
4.2 Particle-mesh Ewald (PME) methods96
4.3 Fast multipole methods for N-particle electrostatic interactions98
4.3.1 Multipole expansions98
4.3.2 A recursion for the local expansions (0 -→ L-level)102
4.3.3 A recursion for the multipole expansions (L→0-level)104
4.3.4 A pseudo-code for FMM104
4.3.5 Conversion operators for electrostatic FMM in R3105
4.4 Helmholtz FMM of wideband of frequencies for N-current source interactions107
4.5 Reaction field hybrid model for electrostatics110
4.6 Summary116
Part Ⅱ Electromagnetic scattering117
5 Maxwell equations, potentials, and physical/artificial boundary conditions119
5.1 Time-dependent Maxwell equations119
5.1.1 Magnetization M and magnetic field H120
5.2 Vector and scalar potentials122
5.2.1 Electric and magnetic potentials for time-harmonic fields123
5.3 Physical boundary conditions for E and H125
5.3.1 Interface conditions between dielectric media125
5.3.2 Leontovich impedance boundary conditions for conductors127
5.3.3 Sommerfeld and Silver-Müller radiation conditions129
5.4 Absorbing boundary conditions for E and H132
5.4.1 One-way wave Engquist-Majda boundary conditions132
5.4.2 High-order local non-reflecting Bayliss-Turkel conditions134
5.4.3 Uniaxial perfectly matched layer (UPML)138
5.5 Summary144
6 Dyadic Green’s functions in layered media145
6.1 Singular charge and current sources145
6.1.1 Singular charge sources145
6.1.2 Singular Hertz dipole current sources147
6.2 Dyadic Green’s functions GE(r│r’) and GH(r│r’)148
6.2.1 Dyadic Green’s functions for homogeneous media149
6.2.2 Dyadic Green’s functions for layered media150
6.2.3 Hankel transform for radially symmetric functions150
6.2.4 Transverse versus longitudinal field components152
6.2.5 Longitudinal components of Green’s functions153
6.3 Dyadic Green’s functions for vector potentials GA(r│r’)157
6.3.1 Sommerfeld potentials158
6.3.2 Transverse potentials160
6.4 Fast computation of dyadic Green’s functions160
6.5 Appendix: Explicit formulae165
6.5.1 Formulae for G1, G2, and G3, etc.165
6.5.2 Closed-form formulae for ψ(kρ)167
6.6 Summary169
7 High-order methods for surface electromagnetic integral equations170
7.1 Electric and magnetic field surface integral equations in layered media170
7.1.1 Integral representations170
7.1.2 Singular and hyper-singular surface integral equations175
7.2 Resonance and combined integral equations182
7.3 Nystr?m collocation methods for Maxwell equations185
7.3.1 Surface differential operators185
7.3.2 Locally corrected Nystr?m method for hyper-singular EFIE186
7.3.3 Nystr?m method for mixed potential EFIE190
7.4 Galerkin methods and high-order RWG current basis191
7.4.1 Galerkin method using vector-scalar potentials191
7.4.2 Functional space for surface current J(r)192
7.4.3 Basis functions over triangular-triangular patches194
7.4.4 Basis functions over triangular-quadrilateral patches198
7.5 Summary203
8 High-order hierarchical Nédélec edge elements205
8.1 Nédélec edge elements in H(curl)205
8.1.1 Finite element method for E or H wave equations206
8.1.2 Reference elements and Piola transformations208
8.1.3 Nédélec finite element basis in H(curl)209
8.2 Hierarchical Nédélec basis functions217
8.2.1 Construction on 2-D quadrilaterals218
8.2.2 Construction on 2-D triangles219
8.2.3 Construction on 3-D cubes222
8.2.4 Construction on 3-D tetrahedra223
8.3 Summary227
9 Time-domain methods - discontinuous Galerkin method and Yee scheme228
9.1 Weak formulation of Maxwell equations228
9.2 Discontinuous Galerkin (DG) discretization229
9.3 Numerical flux h(u-, u+)230
9.4 Orthonormal hierarchical basis for DG methods234
9.4.1 Orthonormal hierarchical basis on quadrilaterals or hexahedra234
9.4.2 Orthonormal hierarchical basis on triangles or tetrahedra234
9.5 Explicit formulae of basis functions236
9.6 Computation of whispering gallery modes (WGMs) with DG methods238
9.6.1 WGMs in dielectric cylinders238
9.6.2 Optical energy transfer in coupled micro-cylinders239
9.7 Finite difference Yee scheme242
9.8 Summary245
10 Scattering in periodic structures and surface plasmons247
10.1 Bloch theory and band gap for periodic structures247
10.1.1 Bloch theory for 1-D periodic Helmholtz equations248
10.1.2 Bloch wave expansions250
10.1.3 Band gaps of photonic structures250
10.1.4 Plane wave method for band gap calculations252
10.1.5 Rayleigh-Bloch waves and band gaps by transmission spectra253
10.2 Finite element methods for periodic structures257
10.2.1 Nédélec edge element for eigen-mode problems257
10.2.2 Time-domain finite element methods for periodic array antennas261
10.3 Physics of surface plasmon waves265
10.3.1 Propagating plasmons on planar surfaces265
10.3.2 Localized surface plasmons268
10.4 Volume integral equation (VIE) for Maxwell equations270
10.5 Extraordinary optical transmission (EOT) in thin metallic films273
10.6 Discontinuous Galerkin method for resonant plasmon couplings274
10.7 Appendix: Auxiliary differential equation (ADE) DG methods for dispersive Maxwell equations276
10.7.1 Debye material277
10.7.2 Drude material282
10.8 Summary283
11 Schr?dinger equations for waveguides and quantum dots284
11.1 Generalized DG (GDG) methods for Schr?dinger equations284
11.1.1 One-dimensional Schr?dinger equations284
11.1.2 Two-dimensional Schr?dinger equations287
11.2 GDG beam propagation methods (BPMs) for optical waveguides289
11.2.1 Guided modes in optical waveguides289
11.2.2 Discontinuities in envelopes of guided modes294
11.2.3 GDG-BPM for electric fields296
11.2.4 GDG-BPM for magnetic fields299
11.2.5 Propagation of HE11 modes301
11.3 Volume integral equations for quantum dots302
11.3.1 One-particle Schr?dinger equation for electrons302
11.3.2 VIE for electrons in quantum dots304
11.3.3 Derivation of the VIE for quantum dots embedded in layered media306
11.4 Summary309
Part Ⅲ Electron transport311
12 Quantum electron transport in semiconductors313
12.1 Ensemble theory for quantum systems313
12.1.1 Thermal equilibrium of a quantum system313
12.1.2 Microcanonical ensembles315
12.1.3 Canonical ensembles316
12.1.4 Grand canonical ensembles319
12.1.5 Bose-Einstein and Fermi-Dirac distributions320
12.2 Density operator ρ for quantum systems324
12.2.1 One-particle density matrix ρ(x,x’)328
12.3 Wigner transport equations and Wigner-Moyal expansions329
12.4 Quantum wave transmission and Landauer current formula335
12.4.1 Transmission coefficient T(E)335
12.4.2 Current formula through barriers via T(E)337
12.5 Non-equilibrium Green’s function (NEGF) and transport current341
12.5.1 Quantum devices with one contact342
12.5.2 Quantum devices with two contacts346
12.5.3 Green’s function and transport current formula348
12.6 Summary348
13 Non-equilibrium Green’s function (NEGF) methods for transport349
13.1 NEGFs for 1-D devices349
13.1.1 1-D device boundary conditions for Green’s functions349
13.1.2 Finite difference methods for 1-D device NEGFs351
13.1.3 Finite element methods for 1-D device NEGFs353
13.2 NEGFs for 2-D devices354
13.2.1 2-D device boundary conditions for Green’s functions354
13.2.2 Finite difference methods for 2-D device NEGFs357
13.2.3 Finite element methods for 2-D device NEGFs359
13.3 NEGF simulation of a 29 nm double gate MOSFET361
13.4 Derivation of Green’s function in 2-D strip-shaped contacts363
13.5 Summary364
14 Numerical methods for Wigner quantum transport365
14.1 Wigner equations for quantum transport365
14.1.1 Truncation of phase spaces and charge conservation365
14.1.2 Frensley inflow boundary conditions367
14.2 Adaptive spectral element method (SEM)367
14.2.1 Cell averages in k-space368
14.2.2 Chebyshev collocation methods in x-space372
14.2.3 Time discretization372
14.2.4 Adaptive meshes for Wigner distributions374
14.3 Upwinding finite difference scheme375
14.3.1 Selections of Lcoh, Ncoh,Lk,and Nk375
14.3.2 Self-consistent algorithm through the Poisson equation376
14.3.3 Currents in RTD by NEGF and Wigner equations377
14.4 Calculation of oscillatory integrals On(z)378
14.5 Summary379
15 Hydrodynamic electron transport and finite difference methods380
15.1 Semi-classical and hydrodynamic models380
15.1.1 Semi-classical Boltzmann equations380
15.1.2 Hydrodynamic equations381
15.2 High-resolution finite difference methods of Godunov type388
15.3 Weighted essentially non-oscillatory (WENO) finite difference methods392
15.4 Central differencing schemes with staggered grids396
15.5 Summary400
16 Transport models in plasma media and numerical methods402
16.1 Kinetic and macroscopic magneto-hydrodynamic (MHD) theories402
16.1.1 Vlasov-Fokker-Planck equations402
16.1.2 MHD equations for plasma as a conducting fluid404
16.2 Vlasov-Fokker-Planck (VFP) schemes410
16.3 Particle-in-cell (PIC) schemes413
16.4 ?·B=0 constrained transport methods for MHD equations414
16.5 Summary418
References419
Index441