图书介绍

神经网络与机器学习 英文版PDF|Epub|txt|kindle电子书版本网盘下载

神经网络与机器学习 英文版
  • (加)SimonHaykin著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:9787111265283
  • 出版时间:2009
  • 标注页数:906页
  • 文件大小:85MB
  • 文件页数:939页
  • 主题词:人工神经-神经网络-英文;机器学习-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

神经网络与机器学习 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction1

1.What is a Neural Network?1

2.The Human Brain6

3.Models of a Neuron10

4.Neural Networks Viewed As Directed Graphs15

5.Feedback18

6.Network Architectures21

7.Knowledge Representation24

8.Learning Processes34

9.Learning Tasks38

10.Concluding Remarks45

Notes and References46

Chapter 1 Rosenblatt's Perceptron47

1.1.Introduction47

1.2.Perceptron48

1.3.The Perceptron Convergence Theorem50

1.4.Relation Between the Perceptron and Bayes Classifier for a Gaussian Environment55

1.5.Computer Experiment:Pattern Classification60

1.6.The Batch Perceptron Algorithm62

1.7.Summary and Discussion65

Notes and References66

Problems66

Chapter 2 Model Building through Regression68

2.1 Introduction68

2.2 Linear Regression Model:Preliminary Considerations69

2.3 Maximum a Posteriori Estimation of the Parameter Vector71

2.4 Relationship Between Regularized Least-Squares Estimation and MAP Estimation76

2.5 Computer Experiment:Pattern Classification77

2.6 The Minimum-Description-Length Principle79

2.7 Finite Sample-Size Considerations82

2.8 The Instrumental-Variables Method86

2.9 Summary and Discussion88

Notes and References89

Problems89

Chapter 3 The Least-Mean-Square Algorithm91

3.1 Introduction91

3.2 Filtering Structure of the LMS Algorithm92

3.3 Unconstrained Optimization:a Review94

3.4 The Wiener Filter100

3.5 The Least-Mean-Square Algorithm102

3.6 Markov Model Portraying the Deviation of the LMS Algorithm from the Wiener Filter104

3.7 The Langevin Equation:Characterization of Brownian Motion106

3.8 Kushner's Direct-Averaging Method107

3.9 Statistical LMS Learning Theory for Small Learning-Rate Parameter108

3.10 Computer Experiment Ⅰ:Linear Prediction110

3.11 Computer Experiment Ⅱ:Pattern Classification112

3.12 Virtues and Limitations of the LMS Algorithm113

3.13 Learning-Rate Annealing Schedules115

3.14 Summary and Discussion117

Notes and References118

Problems119

Chapter 4 Multilayer Perceptrons122

4.1 Introduction123

4.2 Some Preliminaries124

4.3 Batch Learning and On-Line Learning126

4.4 The Back-Propagation Algorithm129

4.5 XOR Problem141

4.6 Heuristics for Making the Back-Propagation Algorithm Perform Better144

4.7 Computer Experiment:Pattern Classification150

4.8 Back Propagation and Differentiation153

4.9 The Hessian and Its Role in On-Line Learning155

4.10 Optimal Annealing and Adaptive Control of the Learning Rate157

4.11 Generalization164

4.12 Approximations of Functions166

4.13 Cross-Validation171

4.14 Complexity Regularization and Network Pruning175

4.15 Virtues and Limitations of Back-Propagation Learning180

4.16 Supervised Learning Viewed as an Optimization Problem186

4.17 Convolutional Networks201

4.18 Nonlinear Filtering203

4.19 Small-Scale Versus Large-Scale Learning Problems209

4.20 Summary and Discussion217

Notes and References219

Problems221

Chapter 5 Kernel Methods and Radial-Basis Function Networks230

5.1 Introduction230

5.2 Cover's Theorem on the Separability of Patterns231

5.3 The Interpolation Problem236

5.4 Radial-Basis-Function Networks239

5.5 K-Means Clustering242

5.6 Recursive Least-Squares Estimation of the Weight Vector245

5.7 Hybrid Learning Procedure for RBF Networks249

5.8 Computer Experiment:Pattern Classification250

5.9 Interpretations of the Gaussian Hidden Units252

5.10 Kernel Regression and Its Relation to RBF Networks255

5.11 Summary and Discussion259

Notes and References261

Problems263

Chapter 6 Support Vector Machines268

6.1 Introduction268

6.2 Optimal Hyperplane for Linearly Separable Patterns269

6.3 Optimal Hyperplane for Nonseparable Patterns276

6.4 The Support Vector Machine Viewed as a Kernel Machine281

6.5 Design of Support Vector Machines284

6.6 XOR Problem286

6.7 Computer Experiment:Pattern Classification289

6.8 Regression:Robustness Considerations289

6.9 Optimal Solution of the Linear Regression Problem293

6.10 The Representer Theorem and Related Issues296

6.11 Summary and Discussion302

Notes and References304

Problems307

Chapter 7 Regularization Theory313

7.1 Introduction313

7.2 Hadamard's Conditions for Well-Posedness314

7.3 Tikhonov's Regularization Theory315

7.4 Regularization Networks326

7.5 Generalized Radial-Basis-Function Networks327

7.6 The Regularized Least-Squares Estimator:Revisited331

7.7 Additional Notes of Interest on Regularization335

7.8 Estimation of the Regularization Parameter336

7.9 Semisupervised Learning342

7.10 Manifold Regularization:Preliminary Considerations343

7.11 Differentiable Manifolds345

7.12 Generalized Regularization Theory348

7.13 Spectral Graph Theory350

7.14 Generalized Representer Theorem352

7.15 Laplacian Regularized Least-Squares Algorithm354

7.16 Experiments on Pattern Classification Using Semisupervised Learning356

7.17 Summary and Discussion359

Notes and References361

Problems363

Chapter 8 Principal-Components Analysis367

8.1 Introduction367

8.2 Principles of Self-Organization368

8.3 Self-Organized Feature Analysis372

8.4 Principal-Components Analysis:Perturbation Theory373

8.5 Hebbian-Based Maximum Eigenfilter383

8.6 Hebbian-Based Principal-Components Analysis392

8.7 Case Study:Image Coding398

8.8 Kernel Principal-Components Analysis401

8.9 Basic Issues Involved in the Coding of Natural Images406

8.10 Kernel Hebbian Algorithm407

8.11 Summary and Discussion412

Notes and References415

Problems418

Chapter 9 Self-Organizing Maps425

9.1 Introduction425

9.2 Two Basic Feature-Mapping Models426

9.3 Self-Organizing Map428

9.4 Properties of the Feature Map437

9.5 Computer Experiments Ⅰ:Disentangling Lattice Dynamics Using SOM445

9.6 Contextual Maps447

9.7 Hierarchical Vector Quantization450

9.8 Kernel Self-Organizing Map454

9.9 Computer Experiment Ⅱ:Disentangling Lattice Dynamics Using Kernel SOM462

9.10 Relationship Between Kernel SOM and Kullback-Leibler Divergence464

9.11 Summary and Discussion466

Notes and References468

Problems470

Chapter 10 Information-Theoretic Learning Models475

10.1 Introduction476

10.2 Entropy477

10.3 Maximum-Entropy Principle481

10.4 Mutual Information484

10.5 Kullback-Leibler Divergence486

10.6 Copulas489

10.7 Mutual Information as an Objective Function to be Optimized493

10.8 Maximum Mutual Information Principle494

10.9 Infomax and Redundancy Reduction499

10.10 Spatially Coherent Features501

10.11 Spatially Incoherent Features504

10.12 Independent-Components Analysis508

10.13 Sparse Coding of Natural Images and Comparison with ICA Coding514

10.14 Natural-Gradient Learning for Independent-Components Analysis516

10.15 Maximum-Likelihood Estimation for Independent-Components Analysis526

10.16 Maximum-Entropy Learning for Blind Source Separation529

10.17 Maximization of Negentropy for Independent-Components Analysis534

10.18 Coherent Independent-Components Analysis541

10.19 Rate Distortion Theory and Information Bottleneck549

10.20 Optimal Manifold Representation of Data553

10.21 Computer Experiment:Pattern Classification560

10.22 Summary and Discussion561

Notes and References564

Problems572

Chapter 11 Stochastic Methods Rooted in Statistical Mechanics579

11.1 Introduction580

11.2 Statistical Mechanics580

11.3 Markov Chains582

11.4 Metropolis Algorithm591

11.5 Simulated Annealing594

11.6 Gibbs Sampling596

11.7 Boltzmann Machine598

11.8 Logistic Belief Nets604

11.9 Deep Belief Nets606

11.10 Deterministic Annealing610

11.11 Analogy of Deterministic Annealing with Expectation-Maximization Algorithm616

11.12 Summary and Discussion617

Notes and References619

Problems621

Chapter 12 Dynamic Programming627

12.1 Introduction627

12.2 Markov Decision Process629

12.3 Bellman's Optimality Criterion631

12.4 Policy Iteration635

12.5 Value Iteration637

12.6 Approximate Dynamic Programming:Direct Methods642

12.7 Temporal-Difference Learning643

12.8 Q-Learning648

12.9 Approximate Dynamic Programming:Indirect Methods652

12.10 Least-Squares Policy Evaluation655

12.11 Approximate Policy Iteration660

12.12 Summary and Discussion663

Notes and References665

Problems668

Chapter 13 Neurodynamics672

13.1 Introduction672

13.2 Dynamic Systems674

13.3 Stability of Equilibrium States678

13.4 Attractors684

13.5 Neurodynamic Models686

13.6 Manipulation of Attractors as a Recurrent Network Paradigm689

13.7 Hopfield Model690

13.8 The Cohen-Grossberg Theorem703

13.9 Brain-State-In-A-Box Model705

13.10 Strange Attractors and Chaos711

13.11 Dynamic Reconstruction of a Chaotic Process716

13.12 Summary and Discussion722

Notes and References724

Problems727

Chapter 14 Bayseian Filtering for State Estimation of Dynamic Systems731

14.1 Introduction731

14.2 State-Space Models732

14.3 Kalman Filters736

14.4 The Divergence-Phenomenon and Square-Root Filtering744

14.5 The Extended Kalman Filter750

14.6 The Bayesian Filter755

14.7 Cubature Kalman Filter:Building on the Kalman Filter759

14.8 Particle Filters765

14.9 Computer Experiment:Comparative Evaluation of Extended Kalman and Particle Filters775

14.10 Kalman Filtering in Modeling of Brain Functions777

14.11 Summary and Discussion780

Notes and References782

Problems784

Chapter 15 Dynamically Driyen Recurrent Networks790

15.1 Introduction790

15.2 Recurrent Network Architectures791

15.3 Universal Approximation Theorem797

15.4 Controllability and Observability799

15.5 Computational Power of Recurrent Networks804

15.6 Learning Algorithms806

15.7 Back Propagation Through Time808

15.8 Real-Time Recurrent Learning812

15.9 Vanishing Gradients in Recurrent Networks818

15.10 Supervised Training Framework for Recurrent Networks Using Nonlinear Sequential State Estimators822

15.11 Computer Experiment:Dynamic Reconstruction of Mackay-Glass Attractor829

15.12 Adaptivity Considerations831

15.13 Case Study:Model Reference Applied to Neurocontrol833

15.14 Summary and Discussion835

Notes and References839

Problems842

Bibliography845

Index889

热门推荐