图书介绍
概型的几何 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![概型的几何 英文版](https://www.shukui.net/cover/24/30221974.jpg)
- DavidEisenbud著 著
- 出版社: 世界图书北京出版公司
- ISBN:9787510004742
- 出版时间:2010
- 标注页数:297页
- 文件大小:57MB
- 文件页数:305页
- 主题词:几何概型-英文
PDF下载
下载说明
概型的几何 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Basic Definitions7
Ⅰ.1 Affine Schemes7
Ⅰ.1.1 Schemes as Sets9
Ⅰ.1.2 Schemes as Topological Spaces10
Ⅰ.1.3 An Interlude on Sheaf Theory11
References for the Theory of Sheaves18
Ⅰ.1.4 Schemes as Schemes(Structure Sheaves)18
Ⅰ.2 Schemes in General21
Ⅰ.2.1 Subschemes23
Ⅰ.2.2 The Local Ring at a Point26
Ⅰ.2.3 Morphisms28
Ⅰ.2.4 The Gluing Construction33
Projective Space34
Ⅰ.3 Relative Schemes35
Ⅰ.3.1 Fibered Products35
Ⅰ.3.2 The Category of S-Schemes39
Ⅰ.3.3 Global Spec40
Ⅰ.4 The Functor of Points42
Ⅱ Examples47
Ⅱ.1 Reduced Schemes over Algebraically Closed Fields47
Ⅱ.1.1 Affine Spaces47
Ⅱ.1.2 Local Schemes50
Ⅱ.2 Reduced Schemes over Non-Algebraically Closed Fields53
Ⅱ.3 Nonreduced Schemes57
Ⅱ.3.1 Double Points58
Ⅱ.3.2 Multiple Points62
Degree and Multiplicity65
Ⅱ.3.3 Embedded Points66
Primary Decomposition67
Ⅱ.3.4 Flat Families of Schemes70
Limits71
Examples72
Flatness75
Ⅱ.3.5 Multiple Lines80
Ⅱ.4 Arithmetic Schemes81
Ⅱ.4.1 Spec Z82
Ⅱ.4.2 Spec of the Ring of Integers in a Number Field82
Ⅱ.4.3 Affine Spaces over Spec Z84
Ⅱ.4.4 A Conic over Spec Z86
Ⅱ.4.5 Double Points in A1 Z88
Ⅲ Projective Schemes91
Ⅲ.1 Attributes of Morphisms92
Ⅲ.1.1 Finiteness Conditions92
Ⅲ.1.2 Properness and Separation93
Ⅲ.2 Proj of a Graded Ring95
Ⅲ.2.1 The Construction of Proj S95
Ⅲ.2.2 Closed Subschemes of Proj R100
Ⅲ.2.3 Global Proj101
Proj of a Sheaf of Graded ?X-Algebras101
The Projectivization P(?)of a Coherent Sheaf ?103
Ⅲ.2.4 Tangent Spaces and Tangent Cones104
Affine and Projective Tangent Spaces104
Tangent Cones106
Ⅲ.2.5 Morphisms to Projective Space110
Ⅲ.2.6 Graded Modules and Sheaves118
Ⅲ.2.7 Grassmannians119
Ⅲ.2.8 Universal Hypersurfaces122
Ⅲ.3 Invariants of Projective Schemes124
Ⅲ.3.1 Hilbert Functions and Hilbert Polynomials125
Ⅲ.3.2 Flatness Ⅱ:Families of Projective Schemes125
Ⅲ.3.3 Free Resolutions127
Ⅲ.3.4 Examples130
Points in the Plane130
Examples:Double Lines in General and in P3 K136
Ⅲ.3.5 Bézout's Theorem140
Multiplicity of Intersections146
Ⅲ.3.6 Hilbert Series149
Ⅳ Classical Constructions151
Ⅳ.1 Flexes of Plane Curves151
Ⅳ.1.1 Definitions151
Ⅳ.1.2 Flexes on Singular Curves155
Ⅳ.1.3 Curves with Multiple Components156
Ⅳ.2 Blow-ups162
Ⅳ.2.1 Definitions and Constructions162
An Example: Blowing up the Plane163
Definition of Blow-ups in General164
The Blowup as Proj170
Blow-ups along Regular Subschemes171
Ⅳ.2.2 Some Classic Blow-Ups173
Ⅳ.2.3 Blow-ups along Nonreduced Schemes179
Blowing Up a Double Point179
Blowing Up Multiple Points181
The j-Function183
Ⅳ.2.4 Blow-ups of Arithmetic Schemes184
Ⅳ.2.5 Project:Quadric and Cubic Surfaces as Blow-ups190
Ⅳ.3 Fano schemes192
Ⅳ.3.1 Definitions192
Ⅳ.3.2 Lines on Quadrics194
Lines on a Smooth Quadric over an Algebraically Closed Field194
Lines on a Quadric Cone196
A Quadric Degenerating to Two Planes198
More Examples201
Ⅳ.3.3 Lines on Cubic Surfaces201
Ⅳ.4 Forms204
Ⅴ Local Constructions209
Ⅴ.1 Images209
Ⅴ.1.1 The Image of a Morphism of Schemes209
Ⅴ.1.2 Universal Formulas213
Ⅴ.1.3 Fitting Ideals and Fitting Images219
Fitting Ideals219
Fitting Images221
Ⅴ.2 Resultants222
Ⅴ.2.1 Definition of the Resultant222
Ⅴ.2.2 Sylvester's Determinant224
Ⅴ.3 Singular Schemes and Discriminants230
Ⅴ.3.1 Definitions230
Ⅴ.3.2 Discriminants232
Ⅴ.3.3 Examples234
Ⅴ.4 Dual Curves240
Ⅴ.4.1 Definitions240
Ⅴ.4.2 Duals of Singular Curves242
Ⅴ.4.3 Curves with Multiple Components242
Ⅴ.5 Double Point Loci246
Ⅵ Schemes and Functors251
Ⅵ.1 The Functor of Points252
Ⅵ.1.1 Open and Closed Subfunctors254
Ⅵ.1.2 K-Rational Points256
Ⅵ.1.3 Tangent Spaces to a Functor256
Ⅵ.1.4 Group Schemes258
Ⅵ.2 Characterization of a Space by its Functor of Points259
Ⅵ.2.1 Characterization of Schemes among Functors259
Ⅵ.2.2 Parameter Spaces262
The Hilbert Scheme262
Examples of Hilbert Schemes264
Variations on the Hilbert Scheme Construction265
Ⅵ.2.3 Tangent Spaces to Schemes in Terms of Their Func-tors of Points267
Tangent Spaces to Hilbert Schemes267
Tangent Spaces to Fano Schemes271
Ⅵ.2.4 Moduli Spaces274
References279
Index285