图书介绍
微积分 第5版 下PDF|Epub|txt|kindle电子书版本网盘下载
- (加)史迪沃特(Stewart,J.)编著 著
- 出版社: 高等教育出版社
- ISBN:7040140047
- 出版时间:2004
- 标注页数:1304页
- 文件大小:106MB
- 文件页数:40164124页
- 主题词:微积分-高等学校-教材-英文
PDF下载
下载说明
微积分 第5版 下PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
A Preview of Calculus2
1 Functions and Models10
1.1Four Ways to Represent a Function11
1.2Mathematical Models:A Catalog of Essential Functions25
1.3New Functions from Old Functions38
1.4Graphing Calculators and Computers48
1.5Exponential Functions55
1.6Inverse Functions and Logarithms63
Review77
Principles of Problem Solving80
2 Limits and Derivatives86
2.1The Tangent and Velocity Problems87
2.2The Limit of a Function92
2.3Calculating Limits Using the Limit Laws104
2.4The Precise Definition of a Limit114
2.5Continuity124
2.6Limits at Infinity;Horizontal Asymptotes135
2.7Tangents,Velocities,and Other Rates of Change149
2.8Derivatives158
Writing Project。Early Methods for Finding Tangents164
2.9The Derivative as a Function165
Review176
Problems Plus180
3 Differentiation Aules182
3.1Derivatives of Polynomials and Exponential Functions183
3.2The Product and Quotient Rules192
3.3Rates of Change in the Natural and Social Sciences199
3.4Derivatives of Trigonometric Functions211
3.5The Chain Rule217
3.6Implicit Differentiation227
3.7Higher Derivatives236
Applied Project。Where Should a Pilot Start Descent?243
Applied Project。Building a Better Roller Goaster243
3.8Derivatives of Logarithmic Functions244
3.9Hyperbolic Functions250
3.10Related Rates256
3.11Linear Approximations and Differentials262
Laboratory Project。Taylor Polynomials269
Review270
Problems Plus274
4 Applications of Differentiation278
4.1Maximum and Minimum Values279
Applied Project。The Calculus of Rainbows288
4.2The Mean Value Theorem290
4.3How Derivatives Affect the Shape of a Graph296
4.4Indeterminate Forms and L’Hospital’s Rule307
Writing Project。The Origins of L’Hospital’s Rule315
4.5Summary of Curve Sketching316
4.6Graphing with Calculus and Calculators324
4.7 Optimization Problems331
Applied Project。The Shape of a Can341
4.8 Applications to Business and Economics342
4.9 Newton’s Method347
4.10Antiderivatives353
Review361
Problems PIus365
5 Integrals368
5.1 Areas and Distances369
5.2 The Definite Integral380
Discovery Project。Area Functions393
5.3 The Fundamental Theorem of Calculus394
5.4 Indefinite Integrals and the Net Change Theorem405
Writing Project。Newton,Leibniz,and the Invention of Galculus413
5.5 The Substitution Rule414
5.6 The Logarithm Defined as an Integral422
Review430
Problems Plus434
6 Applications of lntegration436
6.1 Areas between Curves437
6.2 Volumes444
6.3 Volumes by Cylindrical Shells455
6.4 Work460
6.5 Average Value of a Function464
Applied Project。Where to Sit at the Movies468
Review468
Problems Plus470
7 Techniques of Integration474
7.1Integration by Parts475
7.2Trigonometric Integrals482
7.3Trigonometric Substitution489
7.4Integration of Rational Functions by Partial Fractions496
7.5Strategy for Integration505
7.6Integration Using Tables and Computer Algebra Systems511
Discovery Project 。 Patterns in Integrals517
7.7Approximate Integration518
7.8Improper Integrals530
Review540
Problems Plus543
8 Further Applications of lntegration546
8.1Arc Length547
Discovery Project。Arc Length Contest554
8.2Area of a Surface of Revolution554
Discovery Project 。 Rotating on a 51ant560
8.3Applications to Physics and Engineering561
8.4Applications to Economics and Biology571
8.5Probability575
Review582
Problems Plus584
9 Differential Equations586
9.1Modeling with Differential Equations587
9.2Direction Fields and Euler’s Method592
9.3Separable Equations601
Applied Project。How Fast Does a Tank Drain?609
Applied Project。Which Is Faster,Going Up or Coming Down?610
9.4Exponential Growth and Decay611
Applied Project。Calculus and Baseball622
9.5The Logistic Equation623
9.6Linear Equations632
9.7Predator-Prey Systems638
Review644
Problems Plus648
10 Parametric Equations and Poiar Coordinates650
10.1Curves Defined by Parametric Equations651
Laboratory Project。Running Circles around Circles659
10.2Calculus with Parametric Curves660
Laboratory Project。5ezier Curves669
10.3Polar Coordinates669
10.4Areas and Lengths in Polar Coordinates679
10.5Conic Sections684
10.6Conic Sections in Polar Coordinates692
Review696
Problems Plus699
11 Infinite Sequences and Series700
11.1Sequences701
Laboratory Project。Logistic Sequences713
11.2Series713
11.3The Integral Test and Estimates of Sums723
11.4The Comparison Tests730
11.5Alternating Series735
11.6Absolute Convergence and the Ratio and Root Tests740
11.7Strategy for Testing Series747
11.8Power Series749
11.9Representations of Functions as Power Series754
11.10Taylor and Maclaurin Series760
Laboratory Project。An Elusive Limit772
11.11The Binomial Series772
Writing Project。How Newton Discovered the Binomial 5eriee776
11.12Applications of Taylor Polynomials776
Applied Project。Radiation from the Stars785
Review786
Problems Plue789
12 Vectors and the Geometrq of Space792
12.1Three-Dimensional Coordinate Systems793
12.2Vectors798
12.3The Dot Product807
12.4The Cross Product814
Discovery Project。The Geometry of a Tetrahedron822
12.5Equations of Lines and Planes822
Laboratory Project。Putting 3D in Perspective832
12.6Cylinders and Quadric Surfaces832
12.7Cylindrical and Spherical Coordinates839
Laboratory Project。Families of Surfaces844
Review844
Problems Plus847
13 Vector Functions848
13.1Vector Functions and Space Curves849
13.2Derivatives and Integrals of Vector Functions856
13.3Arc Length and Curvature862
13.4Motion in Space:Velocity and Acceleration870
Applied Project。Kepler’s Laws880
Review881
Problems Plus884
14 Partial DeriVatiVeS886
14.1Functions of Several Variables887
14.2Limits and Continuity902
14.3Partial Derivatives909
14.4Tangent Planes and Linear Approximations923
14.5The Chain Rule931
14.6Directional Derivatives and the Gradient Vector940
14.7Maximum and Minimum Values953
Applied Project。Designing a Dumpster963
Discovery Project。Quadratic Approximations and Critical Points964
14.8Lagrange Multipliers965
Applied ProjectRocket Science972
Applied ProjectHydro-Turbine Optimization973
Review974
Problems Plus978
15 Multiple Integrals980
15.1Double Integrals over Rectangles981
15.2Iterated Integrals989
15.3Double Integrals over General Regions995
15.4Double Integrals in Polar Coordinates1003
15.5Applications of Double Integrals1009
15.6Surface Area1019
15.7Triple Integrals1023
Discovery Project。Volumes of Hyperspheres1032
15.8Triple Integrals in Cylindrical and Spherical Coordinates1033
Applied Project。Roller Derby1039
Discovery Project。The Intersection of Three Cylinders1040
15.9Change of Variables in Multiple Integrals1041
Review1049
Problems Plus1052
16VeCtor CalCUlUS1054
16.1Vector Fields1055
16.2Line Integrals1062
16.3The Fundamental Theorem for Line Integrals1074
16.4Green’s Theorem1083
16.5Curl and Divergence1090
16.6Parametric Surfaces and Their Areas1098
16.7Surface Integrals1109
16.8Stokes’Theorem1121
Writing Project。Three Men and Two Theorems1126
16.9The Divergence Theorem1127
16.10Summary1134
Review1135
Problems Plus1138
17 Second-Drder Differential Equations1140
17.1Second-Order Linear Equations1141
17.2Nonhomogeneous Linear Equations1147
17.3Applications of Second-Order Differential Equations1155
17.4Series Solutions1163
Review1167
AppendixesAl2
ANumbers,Inequalities,and Absolute ValuesA2
BCoordinate Geometry and LinesA10
CGraphs of Second-Degree EquationsA16
DTrigonometryA24
ESigma NotationA34
FProofs of TheoremsA39
GComplex NumbersA49
HAnswers to Odd-Numbered ExercisesA57
IndexA125