图书介绍

Python数据分析基础PDF|Epub|txt|kindle电子书版本网盘下载

Python数据分析基础
  • Clinton W.Brownley著 著
  • 出版社: 南京:东南大学出版社
  • ISBN:9787564170004
  • 出版时间:2017
  • 标注页数:326页
  • 文件大小:43MB
  • 文件页数:348页
  • 主题词:软件工具-程序设计-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Python数据分析基础PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.PythonBasics1

How to Create a Python Script1

Howto Run a Python Script4

Useful Tips for Interacting with the Command Line7

Python's Basic Building Blocks11

Numbers12

Strings14

Regular Expressions and Pattern Matching19

Dates22

Lists25

Tuples31

Dictionaries32

Control Flow37

Reading a Text File44

Create a Text File44

Script and Input File in Same Location47

Modem File-Reading Syntax47

Reading Multiple Text Files with glob48

Create Another Text File49

Writingto a Text File52

Add Code to first_script.Py53

Writing to a Comma-Separated Values(CSV)File55

print Statements57

Chapter Exercises58

2.Comma-SeparatedValues(CSV)Files59

Base Python Versus pandas61

Read andWrite a CSV File(Part 1)62

How Basic String Parsing Can Fail69

Read and Write a CSV File(Part 2)70

Filter for Specific Rows72

Value in Row Meets a Condition73

Value in Row Is in a Set of Interest75

Value in Row Matches a Pattern/Regular Expression77

Select Specific Columns79

Column Index Values79

Column Headings81

Select Contiguous Rows83

Add a Header Row86

Reading Multiple CSV Files88

Count Number of Files and Number of Rows and Columns in Each File90

Concatenate Data from Multiple Files93

Sum and Average a Set ofValues per File97

Chapter Exercises100

3.Excel Files101

Introspecting an Excel Workbook104

Processing a Single Worksheet109

Read and Write an Excel File109

Filter for Specific Rows113

Select Specific Columns120

Reading All Worksheets in a Wbrkbook124

Filter for Specific Rows Across All Worksheets124

Select Specific Columns Across All Worksheets127

Reading a Set of Worksheets in an Excel Workbook129

Filter for Specific Rows Across a Set of Worksheets129

Processing Multiple Workbooks132

Count Number of Workbooks and Rows and Columns in Each Workbook134

Concatenate Data from Multiple Workbooks136

Sum and Average Values per Workbook and Worksheet138

Chapter Exercises142

4.Databases143

Python's Built-in sqlite3 Module145

Insert New Records into a Table151

Update Records in a Table156

MySQL Database160

Insert New Records into a Table165

Query a Table and Write Output to a CSV File170

Update Records in a Table172

Chapter Exercises177

5.Applications179

Find a Set of Items in a Large Collection of Files179

Calculate a Statistic for Any Number of Categories from Data in a CSV File192

Calculate Statistics for Any Number of Categories from Data in a Text File204

Chapter Exercises213

6.Figures and Plots215

matplotlib215

Bar Plot216

Histogram218

Line Plot220

Scatter Plot222

Box Plot224

pandas226

ggplot228

seaborn231

7.Descriptive Statistics and Modeling239

Datasets239

Wine Quality239

Customer Churn240

Wine Quality241

Descriptive Statistics241

Grouping,Histograms,and t-tests243

Pairwise Relationships and Correlation244

Linear Regression with Least-Squares Estimation247

Interpreting Coefficients249

Standardizing Independent Variables249

Making Predictions251

Customer Churn252

Logistic Regression255

Interpreting Coefficients257

Making Predictions259

8.Scheduling Scripts to Run Automatically261

Task Scheduler(Windows)261

The cron Utility(macOS and Unix)270

Crontab File:One-Time Set-up271

Adding Cron Jobs to the Crontab File273

9.Where to Go from Here277

Additional Standard Library Modules and Built-in Functions278

Python Standard Library(PSL):A Few More Standard Modules278

Built-in Functions279

Python Package Index(PyPI):Additional Add-in Modules280

NumPy280

SciPy286

Scikit-Learn290

A Few Additional Add-in Packages292

Additional Data Structures293

Stacks293

Queues294

Graphs294

Trees295

Where to Go from Here295

A.Download Instructions299

B.Answers to Exercises311

Bibliography313

Index315

热门推荐