图书介绍

研究生教学丛书 现代数值分析方法 科学版PDF|Epub|txt|kindle电子书版本网盘下载

研究生教学丛书 现代数值分析方法 科学版
  • 蔺小林编著 著
  • 出版社: 北京:科学出版社
  • ISBN:7030408241
  • 出版时间:2014
  • 标注页数:382页
  • 文件大小:36MB
  • 文件页数:393页
  • 主题词:数值分析-研究生-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

研究生教学丛书 现代数值分析方法 科学版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 引论1

1.1 现代数值分析方法的研究内容1

1.2 误差基础知识2

1.2.1 误差来源与分类2

1.2.2 绝对误差和相对误差4

1.2.3 有效数字5

1.2.4 数据误差在运算中的传播7

1.3 数值计算中应注意的问题8

1.3.1 算法的数值稳定性9

1.3.2 避免误差危害的若干原则10

习题113

第2章 线性代数方程组数值方法14

2.1 向量与矩阵基本知识14

2.1.1 引言14

2.1.2 向量和矩阵15

2.1.3 特殊矩阵16

2.1.4 向量与矩阵的范数18

2.2 高斯消去法22

2.2.1 高斯顺序消去法23

2.2.2 高斯主元消去法28

2.3 矩阵的三角分解30

2.3.1 直接三角分解法32

2.3.2 平方根法36

2.3.3 解三对角方程组的追赶法41

2.4 矩阵的条件数与方程组的性态43

2.5 解线性代数方程组的迭代法50

2.6 基本迭代法52

2.6.1 雅可比迭代法(J-迭代法)53

2.6.2 高斯-赛德尔迭代法(GS-迭代法)55

2.6.3 逐次超松弛迭代法(SOR-迭代法)56

2.7 迭代法的收敛性58

2.7.1 一般迭代法的基本收敛定理58

2.7.2 J-迭代法和GS-迭代法收敛判定定理65

2.7.3 SOR-迭代法收敛性判定定理66

2.8 最速下降法与共轭梯度法69

2.8.1 最速下降法69

2.8.2 共轭梯度法71

习题276

第3章 非线性方程(组)数值方法80

3.1 二分法80

3.2 迭代法82

3.2.1 不动点迭代法82

3.2.2 不动点迭代的一般理论84

3.3 加速迭代收敛的方法88

3.3.1 两个迭代值组合的加速方法88

3.3.2 三个迭代值组合的加速方法90

3.4 牛顿迭代法92

3.4.1 单根情形的牛顿迭代法92

3.4.2 重根情形的牛顿迭代法97

3.4.3 牛顿下山法98

3.5 弦割法与抛物线法100

3.5.1 弦割法100

3.5.2 抛物线法105

3.6 非线性方程组零点的迭代方法107

3.6.1 实值向量函数的基本概念与性质107

3.6.2 压缩映射原理与不动点迭代法111

3.6.3 牛顿迭代法115

习题3120

第4章 函数插值122

4.1 多项式插值问题122

4.1.1 代数插值问题122

4.1.2 代数插值多项式的存在性与唯一性123

4.1.3 误差估计124

4.2 拉格朗日插值法125

4.2.1 拉格朗日插值基函数126

4.2.2 拉格朗日插值多项式128

4.2.3 拉格朗日插值法截断误差及其实用估计129

4.2.4 拉格朗日反插值方法131

4.3 牛顿插值法133

4.3.1 差商的概念与性质133

4.3.2 牛顿插值公式135

4.4 等距节点插值公式136

4.4.1 差分的定义及运算137

4.4.2 差分与差商的关系138

4.4.3 等距节点插值公式139

4.5 埃尔米特插值公式141

4.5.1 一般情形的埃尔米特插值问题141

4.5.2 特殊情况的埃尔米特插值问题144

4.6 分段低次插值146

4.7 三次样条插值方法148

4.7.1 三次样条插值的基本概念148

4.7.2 三弯矩插值法150

4.7.3 样条插值函数的误差估计154

习题4154

第5章 函数逼近156

5.1 内积与正交多项式156

5.1.1 权函数156

5.1.2 内积定义及性质157

5.1.3 正交性157

5.1.4 正交多项式系的性质159

5.2 常见正交多项式系161

5.2.1 勒让德多项式系161

5.2.2 第一类切比雪夫多项式系163

5.2.3 第二类切比雪夫多项式系164

5.2.4 拉盖尔多项式系165

5.2.5 埃尔米特多项式系166

5.3 最佳一致逼近167

5.3.1 最佳一致逼近概念167

5.3.2 最佳逼近多项式的存在性及唯一性167

5.3.3 最佳逼近多项式的构造169

5.4 最佳平方逼近173

5.4.1 最佳平方逼近的概念173

5.4.2 最佳平方逼近函数的求法174

5.4.3 正交多项式作基函数的最佳平方逼近177

5.5 曲线拟合的最小二乘法179

5.5.1 最小二乘曲线拟合问题的求解及误差分析180

5.5.2 多项式拟合的求解过程181

5.5.3 正交函数系的最小二乘曲线拟合183

5.5.4 用最小二乘法求解超定方程组185

习题5188

第6章 矩阵特征值与特征向量的数值算法189

6.1 预备知识189

6.2 乘幂法190

6.2.1 主特征值与主特征向量的计算190

6.2.2 加速收敛技术196

6.3 反幂法198

6.4 雅可比方法200

6.5 QR方法207

6.5.1 反射矩阵208

6.5.2 平面旋转矩阵211

6.5.3 矩阵的QR分解214

6.5.4 豪斯霍尔德方法216

6.5.5 QR方法的收敛性218

6.6 对称三对角矩阵特征值的计算218

6.6.1 对称三对角矩阵的特征多项式序列及其性质218

6.6.2 实对称三对角矩阵特征值的计算223

习题6225

第7章 数值积分及数值微分226

7.1 数值积分的基本概念226

7.1.1 数值求积的基本思想226

7.1.2 插值型求积公式228

7.1.3 代数精度228

7.2 牛顿-柯特斯求积公式233

7.2.1 牛顿-柯特斯公式233

7.2.2 几个低阶求积公式235

7.3 复化求积方法237

7.3.1 复化求积公式237

7.3.2 变步长求积公式240

7.4 龙贝格求积公式242

7.4.1 龙贝格求积公式的推导242

7.4.2 龙贝格求积算法的计算步骤244

7.5 高斯型求积公式245

7.5.1 高斯型求积公式的理论245

7.5.2 几个常用高斯型求积公式247

7.6 二重积分的求积公式253

7.7 数值微分258

7.7.1 插值法258

7.7.2 泰勒展开法261

7.7.3 待定系数法261

习题7262

第8章 常微分方程的数值解法263

8.1 引言263

8.2 欧拉方法及其改进264

8.2.1 欧拉公式264

8.2.2 单步法的局部截断误差和阶266

8.3 龙格-库塔方法269

8.3.1 龙格-库塔方法的基本思想270

8.3.2 龙格-库塔方法的推导270

8.4 线性多步法275

8.4.1 线性多步法的基本思想275

8.4.2 线性多步法的构造277

8.5 算法的稳定性及收敛性283

8.5.1 算法的稳定性283

8.5.2 算法的收敛性286

8.6 一阶常微分方程组与高阶方程287

8.6.1 一阶常微分方程组287

8.6.2 高阶微分方程290

8.7 微分方程求解的波形松弛方法292

8.7.1 微分方程初值问题的波形松弛方法293

8.7.2 微分方程初值问题波形松弛方法的收敛问题297

8.7.3 微分方程边值问题的波形松弛方法299

8.8 微分方程边值问题的数值方法303

8.8.1 打靶方法304

8.8.2 有限差分方法307

习题8309

第9章 电路方程的数值方法311

9.1 电路方程的基本概念和方法311

9.1.1 基本概念311

9.1.2 复相位分析313

9.1.3 刚性微分方程314

9.2 电路模拟的拉普拉斯变换方法317

9.2.1 拉普拉斯变换的定义与性质317

9.2.2 常用函数的拉普拉斯变换318

9.2.3 拉普拉斯变换在电路方程中的应用321

9.2.4 拉普拉斯变换的数值特征分解323

9.3 电路方程数值分析的基本方法330

9.3.1 数值分析方法——牛顿法331

9.3.2 雅可比矩阵的计算339

9.3.3 同伦延拓法342

9.4 电路方程瞬态分析的基本方法346

9.4.1 时间域分析346

9.4.2 初值问题的解法352

9.4.3 边值问题的解法363

9.4.4 数值方法的稳定性367

部分习题参考答案374

参考文献382

热门推荐