图书介绍
动态资产价格理论 第3版PDF|Epub|txt|kindle电子书版本网盘下载
![动态资产价格理论 第3版](https://www.shukui.net/cover/63/34470727.jpg)
- 高蓉 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7506282348
- 出版时间:2007
- 标注页数:465页
- 文件大小:55MB
- 文件页数:484页
- 主题词:证券投资-资产评估-英文
PDF下载
下载说明
动态资产价格理论 第3版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART Ⅰ DISCRETE- TIME MODELS1
1 Introduction to State Pricing3
A Arbitrage and State Prices3
B Risk-Neutral Probabilities4
C Optimality and Asset Pricing5
D Efficiency and Complete Markets8
E Optimality and Representative Agents8
F State-Price Beta Models11
Exercises12
Notes17
2 The Basic Multiperiod Model21
A Uncertainty21
B Security Markets22
C Arbitrage,State Prices,and Martingales22
D Individual Agent Optimality24
E Equilibrium and Pareto Optimality26
F Equilibrium Asset Pricing27
G Arbitrage and Martingale Measures28
H Valuation of Redundant Securities30
I American Exercise Policies and Valuation31
J Is Early Exercise Optimal?35
Exercises37
Notes45
3 The Dynamic Programming Approach49
A The Bellman Approach49
B First-Order Bellman Conditions50
C Markov Uncertainty51
D Markov Asset Pricing52
E Security Pricing by Markov Control52
F Markov Arbitrage-Free Valuation55
G Early Exercise and Optimal Stopping56
Exercises58
Notes63
4 The Infinite-Horizon Setting65
A Markov Dynamic Programming65
B Dynamic Programming and Equilibrium69
C Arbitrage and State Prices70
D Optimality and State Prices71
E Method-of-Moments Estimation73
Exercises76
Notes78
PART Ⅱ CONTINUOUS-TIME MODELS81
5 The Black-Scholes Model83
A Trading Gains for Brownian Prices83
B Martingale Trading Gains85
C Ito Prices and Gains86
D Ito's Formula87
E The Black-Scholes Option-Pricing Formula88
F Black-Scholes Formula:First Try90
G The PDE for Arbitrage-Free Prices92
H The Feynman-Kac Solution93
I The Multidimensional Case94
Exercises97
Notes100
6 State Prices and Equivalent Martingale Measures101
A Arbitrage101
B Numeraire Invariance102
C State Prices and Doubling Strategies103
D Expected Rates of Return106
E Equivalent Martingale Measures108
F State Prices and Martingale Measures110
G Girsanov and Market Prices of Risk111
H Black-Scholes Again115
I Complete Markets116
J Redundant Security Pricing119
K Martingale Measures from No Arbitrage120
L Arbitrage Pricing with Dividends123
M Lumpy Dividends and Term Structures125
N Martingale Measures,Infinite Horizon127
Exercises128
Notes131
7 Term-Structure Models135
A The Term Structure136
B One-Factor Term-Structure Models137
C The Gaussian Single-Factor Models139
D The Cox-Ingersoll-Ross Model141
E The Affine Single-Factor Models142
F Term-Structure Derivatives144
G The Fundamental Solution146
H Multifactor Models148
I Affine Term-Structure Models149
J The HJM Model of Forward Rates151
K Markovian Yield Curves and SPDEs154
Exercises155
Notes161
8 Derivative Pricing167
A Martingale Measures in a Black Box167
B Forward Prices169
C Futures and Continuous Resettlement171
D Arbitrage-Free Futures Prices172
E Stochastic Volatility174
F Option Valuation by Transform Analysis178
G American Security Valuation182
H American Exercise Boundaries186
I Lookback Options189
Exercises191
Notes196
9 Portfolio and Consumption Choice203
A Stochastic Control203
B Merton's Problem206
C Solution to Merton's Problem209
D The Infinite-Horizon Case213
E The Martingale Formulation214
F Martingale Solution217
G A Generalization220
H The Utility-Gradient Approach221
Exercises224
Notes232
10 Equilibrium235
A The Primitives235
B Security-Spot Market Equilibrium236
C Arrow-Debreu Equilibrium237
D Implementing Arrow-Debreu Equilibrium238
E Real Security Prices240
F Optimality with Additive Utility241
G Equilibrium with Additive Utility243
H The Consumption-Based CAPM245
I The CIR Term Structure246
J The CCAPM in Incomplete Markets249
Exercises251
Notes255
11 Corporate Securities259
A The Black-Scholes-Merton Model259
B Endogenous Default Timing262
C Example:Brownian Dividend Growth264
D Taxes and Bankruptcy Costs268
E Endogenous Capital Structure269
F Technology Choice271
G Other Market Imperfections272
H Intensity-Based Modeling of Default274
I Risk-Neutral Intensity Process277
J Zero-Recovery Bond Pricing278
K Pricing with Recovery at Default280
L Default-Adjusted Short Rate281
Exercises282
Notes288
12 Numerical Methods293
A Central Limit Theorems293
B Binomial to Black-Scholes294
C Binomial Convergence for Unbounded Derivative Payoffs297
D Discretization of Asset Price Processes297
E Monte Carlo Simulation299
F Efficient SDE Simulation300
G Applying Feynman-Kac302
H Finite-Difference Methods302
I Term-Structure Example306
J Finite-Difference Algorithms with Early Exercise Options309
K The Numerical Solution of State Prices310
L Numerical Solution of the Pricing Semi-Group313
M Fitting the Initial Term Structure314
Exercises316
Notes317
APPENDIXES321
A Finite-State Probability323
B Separating Hyperplanes and Optimality326
C Probability329
D Stochastic Integration334
E SDE,PDE,and Feynman-Kac340
F Ito's Formula with Jumps347
G Utility Gradients351
H Ito's Formula for Complex Functions355
I Counting Processes357
J Finite-Difference Code363
Bibliography373
Symbol Glossary445
Author Index447
Subject Index457