图书介绍
Computer vision a modern approach = 计算机视觉 一种现代方法 (英文版·第二版)PDF|Epub|txt|kindle电子书版本网盘下载
![Computer vision a modern approach = 计算机视觉 一种现代方法 (英文版·第二版)](https://www.shukui.net/cover/13/33905724.jpg)
- David Forsyth ; Jean Ponce 著
- 出版社: Publishing House of Electronics Industry
- ISBN:7121168307
- 出版时间:2012
- 标注页数:764页
- 文件大小:158MB
- 文件页数:795页
- 主题词:
PDF下载
下载说明
Computer vision a modern approach = 计算机视觉 一种现代方法 (英文版·第二版)PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ IMAGE FORMATION1
1 Geometric Camera Models3
1.1 Image Formation4
1.1.1 Pinhole Perspective4
1.1.2 Weak Perspective6
1.1.3 Cameras with Lenses8
1.1.4 The Human Eye12
1.2 Intrinsic and Extrinsic Parameters14
1.2.1 Rigid Transformations and Homogeneous Coordinates14
1.2.2 Intrinsic Parameters16
1.2.3 Extrinsic Parameters18
1.2.4 Perspective Projection Matrices19
1.2.5 Weak-Perspective Projection Matrices20
1.3 Geometric Camera Calibration22
1.3.1 A Linear Approach to Camera Calibration23
1.3.2 A Nonlinear Approach to Camera Calibration27
1.4 Notes29
2 Light and Shading32
2.1 Modelling Pixel Brightness32
2.1.1 Reflection at Surfaces33
2.1.2 Sources and Their Effects34
2.1.3 The Lambertian+Specular Model36
2.1.4 Area Sources36
2.2 Inference from Shading37
2.2.1 Radiometric Calibration and High Dynamic Range Images38
2.2.2 The Shape of Specularities40
2.2.3 Inferring Lightness and Illumination43
2.2.4 Photometric Stereo:Shape from Multiple Shaded Images46
2.3 Modelling Interreflection52
2.3.1 The Illumination at a Patch Due to an Area Source52
2.3.2 Radiosity and Exitance54
2.3.3 An Interreflection Model55
2.3.4 Qualitative Properties of Interreflections56
2.4 Shape from One Shaded Image59
2.5 Notes61
3 Color68
3.1 Human Color Perception68
3.1.1 Color Matching68
3.1.2 Color Receptors71
3.2 The Physics of Color73
3.2.1 The Color of Light Sources73
3.2.2 The Color of Surfaces76
3.3 Representing Color77
3.3.1 Linear Color Spaces77
3.3.2 Non-linear Color Spaces83
3.4 A Model of Image Color86
3.4.1 The Diffuse Term88
3.4.2 The Specular Term90
3.5 Inference from Color90
3.5.1 Finding Specularities Using Color90
3.5.2 Shadow Removal Using Color92
3.5.3 Color Constancy:Surface Color from Image Color95
3.6 Notes99
Ⅱ EARLY VISION:JUST ONE IMAGE105
4 Linear Filters107
4.1 Linear Filters and Convolution107
4.1.1 Convolution107
4.2 Shift Invariant Linear Systems112
4.2.1 Discrete Convolution113
4.2.2 Continuous Convolution115
4.2.3 Edge Effects in Discrete Convolutions118
4.3 Spatial Frequency and Fourier Transforms118
4.3.1 Fourier Transforms119
4.4 Sampling and Aliasing121
4.4.1 Sampling122
4.4.2 Aliasing125
4.4.3 Smoothing and Resampling126
4.5 Filters as Templates131
4.5.1 Convolution as a Dot Product131
4.5.2 Changing Basis132
4.6 Technique:Normalized Correlation and Finding Patterns132
4.6.1 Controlling the Television by Finding Hands by Normalized Correlation133
4.7 Technique:Scale and Image Pyramids134
4.7.1 The Gaussian Pyramid135
4.7.2 Applications of Scaled Representations136
4.8 Notes137
5 Local Image Features141
5.1 Computing the Image Gradient141
5.1.1 Derivative of Gaussian Filters142
5.2 Representing the Image Gradient144
5.2.1 Gradient-Based Edge Detectors145
5.2.2 Orientations147
5.3 Finding Corners and Building Neighborhoods148
5.3.1 Finding Corners149
5.3.2 Using Scale and Orientation to Build a Neighborhood151
5.4 Describing Neighborhoods with SIFT and HOG Features155
5.4.1 SIFT Features157
5.4.2 HOG Features159
5.5 Computing Local Features in Practice160
5.6 Notes160
6 Texture164
6.1 Local Texture Representations Using Filters166
6.1.1 Spots and Bars167
6.1.2 From Filter Outputs to Texture Representation168
6.1.3 Local Texture Representations in Practice170
6.2 Pooled Texture Representations by Discovering Textons171
6.2.1 Vector Quantization and Textons172
6.2.2 K-means Clustering for Vector Quantization172
6.3 Synthesizing Textures and Filling Holes in Images176
6.3.1 Synthesis by Sampling Local Models176
6.3.2 Filling in Holes in Images179
6.4 Image Denoising182
6.4.1 Non-local Means183
6.4.2 Block Matching 3D (BM3D)183
6.4.3 Learned Sparse Coding184
6.4.4 Results186
6.5 Shape from Texture187
6.5.1 Shape from Texture for Planes187
6.5.2 Shape from Texture for Curved Surfaces190
6.6 Notes191
Ⅲ EARLY VISION:MULTIPLE IMAGES195
7 Stereopsis197
7.1 Binocular Camera Geometry and the Epipolar Constraint198
7.1.1 Epipolar Geometry198
7.1.2 The Essential Matrix200
7.1.3 The Fundamental Matrix201
7.2 Binocular Reconstruction201
7.2.1 Image Rectification202
7.3 Human Stereopsis203
7.4 Local Methods for Binocular Fusion205
7.4.1 Correlation205
7.4.2 Multi-Scale Edge Matching207
7.5 Global Methods for Binocular Fusion210
7.5.1 Ordering Constraints and Dynamic Programming210
7.5.2 Smoothness and Graphs211
7.6 Using More Cameras214
7.7 Application:Robot Navigation215
7.8 Notes216
8 Structure from Motion221
8.1 Internally Calibrated Perspective Cameras221
8.1.1 Natural Ambiguity of the Problem223
8.1.2 Euclidean Structure and Motion from Two Images224
8.1.3 Euclidean Structure and Motion from Multiple Images228
8.2 Uncalibrated Weak-Perspective Cameras230
8.2.1 Natural Ambiguity of the Problem231
8.2.2 Affine Structure and Motion from Two Images233
8.2.3 Affine Structure and Motion from Multiple Images237
8.2.4 From Affine to Euclidean Shape238
8.3 Uncalibrated Perspective Cameras240
8.3.1 Natural Ambiguity of the Problem241
8.3.2 Projective Structure and Motion from Two Images242
8.3.3 Projective Structure and Motion from Multiple Images244
8.3.4 From Projective to Euclidean Shape246
8.4 Notes248
Ⅳ MID-LEVEL VISION253
9 Segmentation by Clustering255
9.1 Human Vision:Grouping and Gestalt256
9.2 Important Applications261
9.2.1 Background Subtraction261
9.2.2 Shot Boundary Detection264
9.2.3 Interactive Segmentation265
9.2.4 Forming Image Regions266
9.3 Image Segmentation by Clustering Pixels268
9.3.1 Basic Clustering Methods269
9.3.2 The Watershed Algorithm271
9.3.3 Segmentation Using K-means272
9.3.4 Mean Shift:Finding Local Modes in Data273
9.3.5 Clustering and Segmentation with Mean Shift275
9.4 Segmentation,Clustering,and Graphs277
9.4.1 Terminology and Facts for Graphs277
9.4.2 Agglomerative Clustering with a Graph279
9.4.3 Divisive Clustering with a Graph281
9.4.4 Normalized Cuts284
9.5 Image Segmentation in Practice285
9.5.1 Evaluating Segmenters286
9.6 Notes287
10 Grouping and Model Fitting290
10.1 The Hough Transform290
10.1.1 Fitting Lines with the Hough Transform290
10.1.2 Using the Hough Transform292
10.2 Fitting Lines and Planes293
10.2.1 Fitting a Single Line294
10.2.2 Fitting Planes295
10.2.3 Fitting Multiple Lines296
10.3 Fitting Curved Structures297
10.4 Robustness299
10.4.1 M-Estimators300
10.4.2 RANSAC:Searching for Good Points302
10.5 Fitting Using Probabilistic Models306
10.5.1 Missing Data Problems307
10.5.2 Mixture Models and Hidden Variables309
10.5.3 The EM Algorithm for Mixture Models310
10.5.4 Difficulties with the EM Algorithm312
10.6 Motion Segmentation by Parameter Estimation313
10.6.1 Optical Flow and Motion315
10.6.2 Flow Models316
10.6.3 Motion Segmentation with Layers317
10.7 Model Selection:Which Model Is the Best Fit?319
10.7.1 Model Selection Using Cross-Validation322
10.8 Notes322
11 Tracking326
11.1 Simple Tracking Strategies327
11.1.1 Tracking by Detection327
11.1.2 Tracking Translations by Matching330
11.1.3 Using Affine Transformations to Confirm a Match332
11.2 Tracking Using Matching334
11.2.1 Matching Summary Representations335
11.2.2 Tracking Using Flow337
11.3 Tracking Linear Dynamical Models with Kalman Filters339
11.3.1 Linear Measurements and Linear Dynamics340
11.3.2 The Kalman Filter344
11.3.3 Forward-backward Smoothing345
11.4 Data Association349
11.4.1 Linking Kalman Filters with Detection Methods349
11.4.2 Key Methods of Data Association350
11.5 Particle Filtering350
11.5.1 Sampled Representations of Probability Distributions351
11.5.2 The Simplest Particle Filter355
11.5.3 The Tracking Algorithm356
11.5.4 A Workable Particle Filter358
11.5.5 Practical Issues in Particle Filters360
11.6 Notes362
Ⅴ HIGH-LEVEL VISION365
12 Registration367
12.1 Registering Rigid Objects368
12.1.1 Iterated Closest Points368
12.1.2 Searching for Transformations via Correspondences369
12.1.3 Application:Building Image Mosaics370
12.2 Model-based Vision:Registering Rigid Objects with Projection375
12.2.1 Verification:Comparing Transformed and Rendered Source to Target377
12.3 Registering Deformable Objects378
12.3.1 Deforming Texture with Active Appearance Models378
12.3.2 Active Appearance Models in Practice381
12.3.3 Application:Registration in Medical Imaging Systems383
12.4 Notes388
13 Smooth Surfaces and Their Outlines391
13.1 Elements of Differential Geometry393
13.1.1 Curves393
13.1.2 Surfaces397
13.2 Contour Geometry402
13.2.1 The Occluding Contour and the Image Contour402
13.2.2 The Cusps and Inflections of the Image Contour403
13.2.3 Koenderink’s Theorem404
13.3 Visual Events:More Differential Geometry407
13.3.1 The Geometry of the Gauss Map407
13.3.2 Asymptotic Curves409
13.3.3 The Asymptotic Spherical Map410
13.3.4 Local Visual Events412
13.3.5 The Bitangent Ray Manifold413
13.3.6 Multilocal Visual Events414
13.3.7 The Aspect Graph416
13.4 Notes417
14 Range Data422
14.1 Active Range Sensors422
14.2 Range Data Segmentation424
14.2.1 Elements of Analytical Differential Geometry424
14.2.2 Finding Step and Roof Edges in Range Images426
14.2.3 Segmenting Range Images into Planar Regions431
14.3 Range Image Registration and Model Acquisition432
14.3.1 Quaternions433
14.3.2 Registering Range Images434
14.3.3 Fusing Multiple Range Images436
14.4 Object Recognition438
14.4.1 Matching Using Interpretation Trees438
14.4.2 Matching Free-Form Surfaces Using Spin Images441
14.5 Kinect446
14.5.1 Features447
14.5.2 Technique:Decision Trees and Random Forests448
14.5.3 Labeling Pixels450
14.5.4 Computing Joint Positions453
14.6 Notes453
15 Learning to Classify457
15.1 Classification,Error,and Loss457
15.1.1 Using Loss to Determine Decisions457
15.1.2 Training Error,Test Error,and Overfitting459
15.1.3 Regularization460
15.1.4 Error Rate and Cross-Validation463
15.1.5 Receiver Operating Curves465
15.2 Major Classification Strategies467
15.2.1 Example:Mahalanobis Distance467
15.2.2 Example:Class-Conditional Histograms and Naive Bayes468
15.2.3 Example:Classification Using Nearest Neighbors469
15.2.4 Example:The Linear Support Vector Machine470
15.2.5 Example:Kernel Machines473
15.2.6 Example:Boosting and Adaboost475
15.3 Practical Methods for Building Classifiers475
15.3.1 Manipulating Training Data to Improve Performance477
15.3.2 Building Multi-Class Classifiers Out of Binary Classifiers479
15.3.3 Solving for SVMS and Kernel Machines480
15.4 Notes481
16 Classifying Images482
16.1 Building Good Image Features482
16.1.1 Example Applications482
16.1.2 Encoding Layout with GIST Features485
16.1.3 Summarizing Images with Visual Words487
16.1.4 The Spatial Pyramid Kernel489
16.1.5 Dimension Reduction with Principal Components493
16.1.6 Dimension Reduction with Canonical Variates494
16.1.7 Example Application:Identifying Explicit Images498
16.1.8 Example Application:Classifying Materials502
16.1.9 Example Application:Classifying Scenes502
16.2 Classifying Images of Single Objects504
16.2.1 Image Classification Strategies505
16.2.2 Evaluating Image Classification Systems505
16.2.3 Fixed Sets of Classes508
16.2.4 Large Numbers of Classes509
16.2.5 Flowers,Leaves,and Birds:Some Specialized Problems511
16.3 Image Classification in Practice512
16.3.1 Codes for Image Features513
16.3.2 Image Classification Datasets513
16.3.3 Dataset Bias515
16.3.4 Crowdsourcing Dataset Collection515
16.4 Notes517
17 Detecting Objects in Images519
17.1 The Sliding Window Method519
17.1.1 Face Detection520
17.1.2 Detecting Humans525
17.1.3 Detecting Boundaries527
17.2 Detecting Deformable Objects530
17.3 The State of the Art of Object Detection535
17.3.1 Datasets and Resources538
17.4 Notes539
18 Topics in Object Recognition540
18.1 What Should Object Recognition Do?540
18.1.1 What Should an Object Recognition System Do?540
18.1.2 Current Strategies for Object Recognition542
18.1.3 What Is Categorization?542
18.1.4 Selection:What Should Be Described?544
18.2 Feature Questions544
18.2.1 Improving Current Image Features544
18.2.2 Other Kinds of Image Feature546
18.3 Geometric Questions547
18.4 Semantic Questions549
18.4.1 Attributes and the Unfamiliar550
18.4.2 Parts,Poselets and Consistency551
18.4.3 Chunks of Meaning554
Ⅵ APPLICATIONS AND TOPICS557
19 Image-Based Modeling and Rendering559
19.1 Visual Hulls559
19.1.1 Main Elements of the Visual Hull Model561
19.1.2 Tracing Intersection Curves563
19.1.3 Clipping Intersection Curves566
19.1.4 Triangulating Cone Strips567
19.1.5 Results568
19.1.6 Going Further:Carved Visual Hulls572
19.2 Patch-Based Multi-View Stereopsis573
19.2.1 Main Elements of the PMVS Model575
19.2.2 Initial Feature Matching578
19.2.3 Expansion579
19.2.4 Filtering580
19.2.5 Results581
19.3 The Light Field584
19.4 Notes587
20 Looking at People590
20.1 HMM’s,Dynamic Programming,and Tree-Structured Models590
20.1.1 Hidden Markov Models590
20.1.2 Inference for an HMM592
20.1.3 Fitting an HMM with EM597
20.1.4 Tree-Structured Energy Models600
20.2 Parsing People in Images602
20.2.1 Parsing with Pictorial Structure Models602
20.2.2 Estimating the Appearance of Clothing604
20.3 Tracking People606
20.3.1 Why Human Tracking Is Hard606
20.3.2 Kinematic Tracking by Appearance608
20.3.3 Kinematic Human Tracking Using Templates609
20.4 3D from 2D:Lifting611
20.4.1 Reconstruction in an Orthographic View611
20.4.2Exploiting Appearance for Unambiguous Reconstructions613
20.4.3Exploiting Motion for Unambiguous Reconstructions615
20.5Activity Recognition617
20.5.1 Background:Human Motion Data617
20.5.2 Body Configuration and Activity Recognition621
20.5.3 Recognizing Human Activities with Appearance Features622
20.5.4 Recognizing Human Activities with Compositional Models624
20.6Resources624
20.7Notes626
21 Image Search and Retrieval627
21.1 The Application Context627
21.1.1 Applications628
21.1.2 User Needs629
21.1.3 Types of Image Query630
21.1.4 What Users Do with Image Collections631
21.2 Basic Technologies from Information Retrieval632
21.2.1 Word Counts632
21.2.2 Smoothing Word Counts633
21.2.3 Approximate Nearest Neighbors and Hashing634
21.2.4 Ranking Documents638
21.3 Images as Documents639
21.3.1 Matching Without Quantization640
21.3.2 Ranking Image Search Results641
21.3.3 Browsing and Layout643
21.3.4 Laying Out Images for Browsing644
21.4 Predicting Annotations for Pictures645
21.4.1 Annotations from Nearby Words646
21.4.2 Annotations from the Whole Image646
21.4.3 Predicting Correlated Words with Classifiers648
21.4.4 Names and Faces649
21.4.5 Generating Tags with Segments651
21.5 The State of the Art of Word Prediction654
21.5.1 Resources655
21.5.2 Comparing Methods655
21.5.3 Open Problems656
21.6 Notes659
Ⅶ BACKGROUND MATERIAL661
22 Optimization Techniques663
22.1 Linear Least-Squares Methods663
22.1.1 Normal Equations and the Pseudoinverse664
22.1.2 Homogeneous Systems and Eigenvalue Problems665
22.1.3 Generalized Eigenvalues Problems666
22.1.4 An Example:Fitting a Line to Points in a Plane666
22.1.5 Singular Value Decomposition667
22.2 Nonlinear Least-Squares Methods669
22.2.1 Newton’s Method:Square Systems of Nonlinear Equations670
22.2.2 Newton’s Method for Overconstrained Systems670
22.2.3 The Gauss-Newton and Levenberg-Marquardt Algorithms671
22.3 Sparse Coding and Dictionary Learning672
22.3.1 Sparse Coding672
22.3.2 Dictionary Learning673
22.3.3 Supervised Dictionary Learning675
22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization675
22.4.1 Min-Cut Problems676
22.4.2 Quadratic Pseudo-Boolean Functions677
22.4.3 Generalization to Integer Variables679
22.5 Notes682
Bibliography684
Index737
List of Algorithms760