图书介绍
The Classical Groups Their Invariants and RepresentationsPDF|Epub|txt|kindle电子书版本网盘下载
![The Classical Groups Their Invariants and Representations](https://www.shukui.net/cover/56/33566689.jpg)
- Hermann Weyl 著
- 出版社: Princeton University Press
- ISBN:
- 出版时间:1939
- 标注页数:320页
- 文件大小:69MB
- 文件页数:332页
- 主题词:
PDF下载
下载说明
The Classical Groups Their Invariants and RepresentationsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER Ⅰ INTRODUCTION1
1.Fields,rings,ideals,polynomials1
2.Vector space6
3.Orthogonal transformations,Euclidean vector geometry11
4.Groups,Klein's Erlanger program.Quantities13
5.Invariants and covariants23
CHAPTER Ⅱ VECTOR INVARIANTS27
1.Remembrance of things past27
2.The main propositions of the theory of invariants29
A.FIRST MAIN THEOREM36
3.First example:the symmetric group36
4.Capelli's identity39
5.Reduction of the first main problem by means of Capelli's identities42
6.Second example:the unimodular group SL(n)45
7.Extension theorem.Third example:the group of step transformations47
8.A general method for including contravariant arguments49
9.Fourth example:the orthogonal group52
B.A CLOSE-UP OF THE ORTHOGONAL GROUP56
10.Cayley's rational parametrization of the orthogonal group56
11.Formal orthogonal invariants62
12.Arbitrary metric ground form65
13.The infinitesimal standpoint66
C.THE SECOND MAIN THEOREM70
14.Statement of the proposition for the unimodular group70
15.Capelli's formal congruence72
16.Proof of the second main theorem for the unimodular group73
17.The second main theorem for the unimodular group75
CHAPTER Ⅲ MATRIC ALGEBRAS AND GROUP RINGS79
A.THEORY OF FULLY REDUCIBLE MATRIC ALGEBRAS79
1.Fundamental notions concerning matric algebras.The Schur lemma79
2.Preliminaries84
3.Representations of a simple algebra87
4.Wedderburn'8 theorem90
5.The fully reducible matric algebra and its commutator algebra93
B.THE RING OF A FINITE GROUP AND ITS COMMUTATOR ALGEBRA96
6.Stating the problem96
7.Full reducibility of the group ring101
8.Formal lemmas106
9.Reciprocity between group ring and commutator algebra107
10.A generalization112
CHAPTER Ⅳ THE SYMMETRIC GROUP AND THE FULL LINEAR GROUP115
1.Representation of a finite group in an algebraically closed field115
2.The Young symmetrizers.A combinatorial lemma119
3.The irreducible representations of the symmetric group124
4.Decomposition of tensor space127
5.Quantities.Expansion131
CHAPTER Ⅴ THE ORTHOGONAL GROUP137
A.THE ENVELOPING ALGEBRA AND THE ORTHOGONAL IDEAL137
1.Vector invariants of the unimodular group again137
2.The enveloping algebra of the orthogonal group140
3.Giving the result its formal setting143
4.The orthogonal prime ideal144
5.An abstract algebra related to the orthogonal group147
B.THE IRREDUCIBLE REPRESENTATIONS149
6.Decomposition by the trace operation149
7.The irreducible representations of the full orthogonal group153
C.THE PROPER ORTHOGONAL GROUP159
8.Clifford's theorem159
9.Representations of the proper orthogonal group163
CHAPTER Ⅵ THE 8YMPLECTIC GROUP165
1.Vector invariants of the symplectic group165
2.Parametrization and unitary restriction169
3.Embedding algebra and representations of the symplectic group173
CHAPTER Ⅶ CHARACTERS176
1.Preliminaries about unitary transformations176
2.Character for symmetrization or alternation alone181
3.Averaging over a group185
4.The volume element of the unitary group194
5.Computation of the characters198
6.The characters of GL(n).Enumeration of covariants201
7.A purely algebraic approach208
8.Characters of the symplectic group216
9.Characters of the orthogonal group222
10.Decomposition and X-multiplication229
11.The Poincaré polynomial232
CHAPTER Ⅷ GENERAL THEORY OF INVARIANTS239
A.ALGEBRAIC PART239
1.Classic invariants and invariants of qualities.Gram's theorem239
2.The symbolic method243
3.The binary quadratic246
4.Irrational methods248
5.Side remarks250
6.Hilbert's theorem on polynomial ideals251
7.Proof of the first main theorem for GL(n)252
8.The adjunction argument254
B.DIFFERENTIAL AND INTEGRAL METHODS258
9.Group germ and Lie algebras258
10.Differential equations for invariants.Absolute and relative invariants262
11.The unitarian trick265
12.The connectivity of the classical groups268
13.Spinors270
14.Finite integrity basis for invariants of compact groups274
15.The first main theorem for finite groups275
16.Invariant differentials and Betti numbers of a compact Lie group276
CHAPTER Ⅸ MATRIC ALGEBRAS RESUMED280
1.Automorphisms280
2.A lemma on multiplication283
3.Products of simple algebras286
4.Adjunction288
CHAPTER Ⅹ SUPPLEMENTS291
A.SUPPLEMENT TO CHAPTER II,9-13,AND CHAPTER VI,1,CONCERNING INFINITESIMAL VECTOR INVARIANTS291
1.An identity for infinitesimal orthogonal invariants291
2.First Main Theorem for the orthogonal group293
3.The same for the symplectic group294
B.SUPPLEMENT TO CHAPTER V,3,AND CHAPTER VI,2 AND 3,CONCERNING THE SYMPLECTIC AND ORTHOGONAL IDEALS295
4.A proposition on full reduction295
5.The symplectic ideal296
6.The full and the proper orthogonal? ideals299
C.SUPPLEMENT TO CHAPTER VIII,7-8,CONCERNING.300
7.A modified proof of the main theorem on invariants300
D.SUPPLEMENT TO CHAPTER IX,4,ABOUT EXTENSION OF THE GROUND FIELD303
8.Effect of field extension on a division algebra303
ERRATA AND ADDENDA307
BIBLIOGRAPHY308
SUPPLEMENTARY BIBLIOGRAPHY,MAINLY FOR THE YEARS 1940-1945314
INDEX317