图书介绍
LINEAR ALGEBRA AND LTS APPLICATIONSPDF|Epub|txt|kindle电子书版本网盘下载
![LINEAR ALGEBRA AND LTS APPLICATIONS](https://www.shukui.net/cover/71/33561185.jpg)
- DAVID C.LAY 著
- 出版社: ADDISON-WESLEY PUBLISHING COMPANY
- ISBN:
- 出版时间:1993
- 标注页数:508页
- 文件大小:74MB
- 文件页数:525页
- 主题词:
PDF下载
下载说明
LINEAR ALGEBRA AND LTS APPLICATIONSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 SYSTEMS OF LINEAR EQUATIONS1
Introductory Example:Linear Models in Economics and Engineering1
1.1 Introduction to Systems of Linear Equations2
1.2 Row Reduction and Echelon Forms13
1.3 Applications of Linear Systems25
Supplementary Exercises34
2 VECTOR AND MATRIX EQUATIONS37
Introductory Example:Nutrition Problems37
2.1 Vectors in R”38
2.2 The Equation Ax=b48
2.3 Solution Sets of Linear Systems56
2.4 Linear Independence63
2.5 Introduction to Linear Transformations71
2.6 The Matrix of a Linear Transformation79
2.7 Applications to Nutrition and Population Movement85
Supplementary Exercises92
3 MATRIX ALGEBRA95
Introductory Example:Computer Graphics in Automotive Design95
3.1 Matrix Operations96
3.2 The Inverse of a Matrix107
3.3 Characterizations of Invertible Matrices116
3.4 Partitioned Matrices121
3.5 Matrix Factorizations128
3.6 Iterative Solutions of Linear Systems137
3.7 The Leontief Input-Output Model142
3.8 Applications to Computer Graphics148
Supplementary Exercises158
4 DETERMINANTS161
Introductory Example:Determinants in Analytic Geometry161
4.1 Introduction to Determinants162
4.2 Properties of Determinants168
4.3 Cramer’s Rule,Volume,and Linear Transformations176
Supplementary Exercises186
5 VECTOR SPACES189
Introductory Example:Space Flight and Control Systems189
5.1 Vector Spaces and Subspaces190
5.2 Null Spaces,Column Spaces,and Linear Transformations200
5.3 Linearly Independent Sets; Bases211
5.4 Coordinate Systems219
5.5 The Dimension of a Vector Space229
5.6 Rank235
5.7 Change of Basis243
5.8 Applications to Difference Equations248
5.9 Applications to Markov Chains259
Supplementary Exercises269
6 EIGENVALUES AND EIGENVECTORS271
Introductory Example:Dynamical Systems and Spotted Owls271
6.1 Eigenvectors and Eigenvalues273
6.2 The Characteristic Equation280
6.3 Diagonalization288
6.4 Eigenvectors and Linear Transformations296
6.5 Complex Eigenvalues303
6.6 Applications to Dynamical Systems310
6.7 Iterative Estimates for Eigenvalues321
Supplementary Exercises329
7 ORTHOGONALITY AND LEAST-SQUARES331
Introductory Example:Readjusting the North American Datum331
7.1 Inner Product,Length,and Orthogonality333
7.2 Orthogonal Sets342
7.3 Orthogonal Projections352
7.4 The Gram-Schmidt Process359
7.5 Least-Squares Problems366
7.6 Applications to Linear Models376
7.7 Inner Product Spaces384
7.8 Applications of Inner Product Spaces393
Supplementary Exercises401
8 SYMMETRIC MATRICES AND QUADRATIC FORMS403
Introductory Example:Multichannel Image Processing403
8.1 Diagonalization of Symmetric Matrices405
8.2 Quadratic Forms411
8.3 Constrained Optimization419
8.4 The Singular Value Decomposition426
8.5 Applications to Image Processing and Statistics435
Supplementary Exercises444
APPENDICES447
A Uniqueness of the Reduced Echelon Form447
B Complex Numbers449
GLOSSARY455
ANSWERS TO ODD-NUMBERED EXERCISES467