图书介绍
相空间中的量子光学 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![相空间中的量子光学 英文版](https://www.shukui.net/cover/15/30283260.jpg)
- WolfgangP.Schleich著 著
- 出版社: 世界图书北京出版公司
- ISBN:9787510005435
- 出版时间:2010
- 标注页数:695页
- 文件大小:50MB
- 文件页数:714页
- 主题词:量子光学-英文
PDF下载
下载说明
相空间中的量子光学 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 What's Quantum Optics?1
1.1 On the Road to Quantum Optics1
1.2 Resonance Fluorescence2
1.2.1 Elastic Peak:Light as a Wave2
1.2.2 Mollow-Three-Peak Spectrum3
1.2.3 Anti-Bunching5
1.3 Squeezing the Fluctuations7
1.3.1 What is a Squeezed State?7
1.3.2 Squeezed States in the Optical Parametric Oscillator9
1.3.3 Oscillatory Photon Statistics12
1.3.4 Interference in Phase Space13
1.4 Jaynes-Cummings-Paul Model14
1.4.1 Single Two-Level Atom plus a Single Mode15
1.4.2 Time Scales15
1.5 Cavity QED16
1.5.1 An Amazing Maser16
1.5.2 Cavity QED in the Optical Domain19
1.6 de Broglie Optics22
1.6.1 Electron and Neutron Optics22
1.6.2 Atom Optics23
1.6.3 Atom Optics in Quantized Light Fields25
1.7 Quantum Motion in Paul Traps26
1.7.1 Analogy to Cavity QED26
1.7.2 Quantum Information Processing26
1.8 Two-Photon Interferometry and More28
1.9 Outline of the Book29
2 Ante35
2.1 Position and Momentum Eigenstates36
2.1.1 Properties of Eigenstates36
2.1.2 Derivative of Wave Function38
2.1.3 Fourier Transform Connects x-and p-Space39
2.2 Energy Eigenstate40
2.2.1 Arbitrary Representation41
2.2.2 Position Representation42
2.3 Density Operator:A Brief Introduction44
2.3.1 A State Vector is not Enough!44
2.3.2 Definition and Properties48
2.3.3 Trace of Operator49
2.3.4 Examples of a Density Operator51
2.4 Time Evolution of Quantum States53
2.4.1 Motion of a Wave Packet54
2.4.2 Time Evolution due to Interaction55
2.4.3 Time Dependent Hamiltonian57
2.4.4 Time Evolution of Density Operator61
3 Wigner Function67
3.1 Jump Start of the Wigner Function68
3.2 Properties of the Wigner Function69
3.2.1 Marginals69
3.2.2 Overlap of Quantum States as Overlap in Phase Space71
3.2.3 Shape of Wigner Function72
3.3 Time Evolution of Wigner Function74
3.3.1 von Neumann Equation in Phase Space74
3.3.2 Quantum Liouville Equation75
3.4 Wigner Function Determined by Phase Space76
3.4.1 Definition of Moyal Function76
3.4.2 Phase Space Equations for Moyal Functions77
3.5 Phase Space Equations for Energy Eigenstates78
3.5.1 Power Expansion in Planck's Constant79
3.5.2 Model Differential Equation81
3.6 Harmonic Oscillator84
3.6.1 Wigner Function as Wave Function85
3.6.2 Phase Space Enforces Energy Quantization86
3.7 Evaluation of Quantum Mechanical Averages87
3.7.1 Operator Ordering88
3.7.2 Examples of Weyl-Wigner Ordering90
4 Quantum States in Phase Space99
4.1 Energy Eigenstate100
4.1.1 Simple Phase Space Representation100
4.1.2 Large-m Limit101
4.1.3 Wigner Function105
4.2 Coherent State108
4.2.1 Definition of a Coherent State109
4.2.2 Energy Distribution110
4.2.3 Time Evolution113
4.3 Squeezed State119
4.3.1 Definition of a Squeezed State121
4.3.2 Energy Distribution:Exact Treatment125
4.3.3 Energy Distribution:Asymptotic Treatment128
4.3.4 Limit Towards Squeezed Vacuum132
4.3.5 Time Evolution135
4.4 Rotated Quadrature States136
4.4.1 Wigner Function of Position and Momentum States137
4.4.2 Position Wave Function of Rotated Quadrature States140
4.4.3 Wigner Function of Rotated Quadrature States142
4.5 Quantum State Reconstruction143
4.5.1 Tomographic Cuts through Wigner Function143
4.5.2 Radon Transformation144
5 Waves à la WKB153
5.1 Probability for Classical Motion153
5.2 Probability Amplitudes for Quantum Motion155
5.2.1 An Educated Guess156
5.2.2 Range of Validity of WKB Wave Function158
5.3 Energy Quantization159
5.3.1 Determining the Phase159
5.3.2 Bohr-Sommerfeld-Kramers Quantization161
5.4 Summary163
5.4.1 Construction of Primitive WKB Wave Function163
5.4.2 Uniform Asymptotic Expansion164
6 WKB and Berry Phase171
6.1 Berry Phase and Adiabatic Approximation172
6.1.1 Adiabatic Theorem172
6.1.2 Analysis of Geometrical Phase174
6.1.3 Geometrical Phase as a Flux in Hilbert Space175
6.2 WKB Wave Functions from Adiabaticity176
6.2.1 Energy Eigenvalue Problem as Propagation Problem177
6.2.2 Dynamical and Geometrical Phase181
6.2.3 WKB Waves Rederived183
6.3 Non-Adiabatic Berry Phase185
6.3.1 Derivation of the Aharonov-Anandan Phase186
6.3.2 Time Evolution in Harmonic Oscillator187
7 Interference in Phase space189
7.1 Outline of the Idea189
7.2 Derivation of Area-of-Overlap Formalism192
7.2.1 Jumps Viewed From Position Space192
7.2.2 Jumps Viewed From Phase Space197
7.3 Application to Franck-Condon Transitions200
7.4 Generalization201
8 Applications of Interference in Phase Space205
8.1 Connection to Interference in Phase Space205
8.2 Energy Eigenstates206
8.3 Coherent State208
8.3.1 Elementary Approach209
8.3.2 Influence of Internal Structure212
8.4 Squeezed State213
8.4.1 Oscillations from Interference in Phase Space213
8.4.2 Giant Oscillations216
8.4.3 Summary218
8.5 The Question of Phase States221
8.5.1 Amplitude and Phase in a Classical Oscillator221
8.5.2 Definition of a Phase State223
8.5.3 Phase Distribution of a Quantum State227
9 Wave Packet Dynamics233
9.1 What are Wave Packets?233
9.2 Fractional and Full Revivals234
9.3 Natural Time Scales237
9.3.1 Hierarchy of Time Scales237
9.3.2 Generic Signal239
9.4 New Representations of the Signal241
9.4.1 The Early Stage of the Evolution241
9.4.2 Intermediate Times244
9.5 Fractional Revivals Made Simple246
9.5.1 Gauss Sums246
9.5.2 Shape Function246
10 Field Quantization255
10.1 Wave Equations for the Potentials256
10.1.1 Derivation of the Wave Equations256
10.1.2 Gauge Invariance of Electrodynamics257
10.1.3 Solution of the Wave Equation260
10.2 Mode Structure in a Box262
10.2.1 Solutions of Helmholtz Equation262
10.2.2 Polarization Vectors from Gauge Condition263
10.2.3 Discreteness of Modes from Boundaries264
10.2.4 Boundary Conditions on the Magnetic Field264
10.2.5 Orthonormality of Mode Functions265
10.3 The Field as a Set of Harmonic Oscillators266
10.3.1 Energy in the Resonator267
10.3.2 Quantization of the Radiation Field269
10.4 The Casimir Effect272
10.4.1 Zero-Point Energy of a Rectangular Resonator272
10.4.2 Zero-Point Energy of Free Space274
10.4.3 Difference of Two Infinite Energies275
10.4.4 Casimir Force:Theory and Experiment276
10.5 Operators of the Vector Potential and Fields278
10.5.1 Vector Potential278
10.5.2 Electric Field Operator280
10.5.3 Magnetic Field Operator281
10.6 Number States of the Radiation Field281
10.6.1 Photons and Anti-Photons282
10.6.2 Multi-Mode Case282
10.6.3 Superposition and Entangled States283
11 Field States291
11.1 Properties of the Quantized Electric Field291
11.1.1 Photon Number States292
11.1.2 Electromagnetic Field Eigenstates293
11.2 Coherent States Revisited295
11.2.1 Eigenvalue Equation295
11.2.2 Coherent State as a Displaced Vacuum297
11.2.3 Photon Statistics of a Coherent State298
11.2.4 Electric Field Distribution of a Coherent State299
11.2.5 Over-completeness of Coherent States301
11.2.6 Expansion into Coherent States303
11.2.7 Electric Field Expectation Values305
11.3 Schr?dinger Cat State306
11.3.1 The Original Cat Paradox306
11.3.2 Definition of the Field Cat State307
11.3.3 Wigner Phase Space Representation307
11.3.4 Photon Statistics310
12 Phase Space Functions321
12.1 There is more than Wigner Phase Space321
12.1.1 Who Needs Phase Space Functions?321
12.1.2 Another Description of Phase Space322
12.2 The Husimi-Kano Q-Function324
12.2.1 Definition of Q-Function324
12.2.2 Q-Functions of Specific Quantum States324
12.3 Averages Using Phase Space Functions330
12.3.1 Heuristic Argument330
12.3.2 Rigorous Treatment333
12.4 The Glauber-Sudarshan P-Distribution337
12.4.1 Definition of P-Distribution337
12.4.2 Connection between Q-and P-Function338
12.4.3 P-Function from Q-Function339
12.4.4 Examples of P-Distributions341
13 Optical Interferometry349
13.1 Beam Splitter350
13.1.1 Classical Treatment350
13.1.2 Symmetric Beam Splitter352
13.1.3 Transition to Quantum Mechanics353
13.1.4 Transformation of Quantum States353
13.1.5 Count Statistics at the Exit Ports356
13.2 Homodyne Detector357
13.2.1 Classical Considerations357
13.2.2 Quantum Treatment358
13.3 Eight-Port Interferometer361
13.3.1 Quantum State of the Output Modes361
13.3.2 Photon Count Statistics363
13.3.3 Simultaneous Measurement and EPR365
13.3.4 Q-Function Measurement367
13.4 Measured Phase Operators370
13.4.1 Measurement of Classical Trigonometry370
13.4.2 Measurement of Quantum Trigonometry372
13.4.3 Two-Mode Phase Operators374
14 Atom-Field Interaction381
14.1 How to Construct the Interaction?382
14.2 Vector Potential-Momentum Coupling382
14.2.1 Gauge Principle Determines Minimal Coupling383
14.2.2 Interaction of an Atom with a Field386
14.3 Dipole Approximation389
14.3.1 Expansion of Vector Potential389
14.3.2 ?·?-Interaction390
14.3.3 Various Forms of the ?·? Interaction390
14.3.4 Higher Order Corrections392
14.4 Electric Field-Dipole Interaction393
14.4.1 Dipole Approximation393
14.4.2 R?ntgen Hamiltonians and Others393
14.5 Subsystems,Interaction and Entanglement395
14.6 Equivalence of ?·? and ?·?396
14.6.1 Classical Transformation of Lagrangian397
14.6.2 Quantum Mechanical Treatment399
14.6.3 Matrix elements of ?·? and ?·?399
14.7 Equivalence of Hamiltonians H(1) and ?(1)400
14.8 Simple Model for Atom-Field Interaction402
14.8.1 Derivation of the Hamiltonian402
14.8.2 Rotating-Wave Approximation406
15 Jaynes-Cummings-Paul Model:Dynamics413
15.1 Resonant Jaynes-Cummings-Paul Model413
15.1.1 Time Evolution Operator Using Operator Algebra414
15.1.2 Interpretation of Time Evolution Operator416
15.1.3 State Vector of Combined System418
15.1.4 Dynamics Represented in State Space418
15.2 Role of Detuning420
15.2.1 Atomic and Field States420
15.2.2 Rabi Equations422
15.3 Solution of Rabi Equations423
15.3.1 Laplace Transformation424
15.3.2 Inverse Laplace Transformation425
15.4 Discussion of Solution426
15.4.1 General Considerations427
15.4.2 Resonant Case427
15.4.3 Far Off-Resonant Case429
16 State Preparation and Entanglement435
16.1 Measurements on Entangled Systems435
16.1.1 How to Get Probabilities436
16.1.2 State of the Subsystem after a Measurement439
16.1.3 Experimental Setup440
16.2 Collapse,Revivals and Fractional Revivals444
16.2.1 Inversion as Tool for Measuring Internal Dynamics444
16.2.2 Experiments on Collapse and Revivals447
16.3 Quantum State Preparation451
16.3.1 State Preparation with a Dispersive Interaction451
16.3.2 Generation of Schr?dinger Cats454
16.4 Quantum State Engineering454
16.4.1 Outline of the Method454
16.4.2 Inverse Problem458
16.4.3 Example:Preparation of a Phase State461
17 Paul Trap473
17.1 Basics of Trapping Ions474
17.1.1 No Static Trapping in Three Dimensions474
17.1.2 Dynamical Trapping475
17.2 Laser Cooling479
17.3 Motion of an Ion in a Paul Trap480
17.3.1 Reduction to Classical Problem481
17.3.2 Motion as a Sequence of Squeezing and Rotations483
17.3.3 Dynamics in Wigner Phase Space486
17.3.4 Floquet Solution490
17.4 Model Hamiltonian494
17.4.1 Transformation to Interaction Picture495
17.4.2 Lamb-Dicke Regime496
17.4.3 Multi-Phonon Jaynes-Cummings-Paul Model498
17.5 Effective Potential Approximation500
18 Damping and Amplification507
18.1 Damping and Amplification of a Cavity Field508
18.2 Density Operator of a Subsystem509
18.2.1 Coarse-Grained Equation of Motion509
18.2.2 Time Independent Hamiltonian511
18.3 Reservoir of Two-Level Atoms511
18.3.1 Approximate Treatment512
18.3.2 Density Operator in Number Representation514
18.3.3 Exact Master Equation519
18.3.4 Summary522
18.4 One-Atom Maser522
18.4.1 Density Operator Equation523
18.4.2 Equation of Motion for the Photon Statistics524
18.4.3 Phase Diffusion529
18.5 Atom-Reservoir Interaction532
18.5.1 Model and Equation of Motion532
18.5.2 First Order Contribution533
18.5.3 Bloch Equations535
18.5.4 Second Order Contribution537
18.5.5 Lamb Shift539
18.5.6 Weisskopf-Wigner Decay540
19 Atom Optics in Quantized Light Fields549
19.1 Formulation of Problem549
19.1.1 Dynamics549
19.1.2 Time Evolution of Probability Amplitudes552
19.2 Reduction to One-Dimensional Scattering554
19.2.1 Slowly Varying Approximation554
19.2.2 From Two Dimensions to One555
19.2.3 State Vector556
19.3 Raman-Nath Approximation557
19.3.1 Heuristic Arguments557
19.3.2 Probability Amplitudes558
19.4 Deflection of Atoms559
19.4.1 Measurement Schemes and Scattering Conditions559
19.4.2 Kapitza-Dirac Regime562
19.4.3 Kapitza-Dirac Scattering with a Mask568
19.5 Interference in Phase Space571
19.5.1 How to Represent the Quantum State?572
19.5.2 Area of Overlap572
19.5.3 Expression for Probability Amplitude573
20 Wigner Functions in Atom Optics579
20.1 Model579
20.2 Equation of Motion for Wigner Functions581
20.3 Motion in Phase Space582
20.3.1 Harmonic Approximation583
20.3.2 Motion of the Atom in the Cavity583
20.3.3 Motion of the Atom outside the Cavity585
20.3.4 Snap Shots of the Wigner Function586
20.4 Quantum Lens587
20.4.1 Distributions of Atoms in Space587
20.4.2 Focal Length and Deflection Angle589
20.5 Photon and Momentum Statistics590
20.6 Heuristic Approach592
20.6.1 Focal Length592
20.6.2 Focal Size594
A Energy Wave Functions of Harmonic Oscillator597
A.1 Polynomial Ansatz597
A.2 Asymptotic Behavior599
A.2.1 Energy Wave Function as a Contour Integral600
A.2.2 Evaluation of the Integral Im600
A.2.3 Asymptotic Limit of fm603
A.2.4 Bohr's Correspondence Principle603
B Time Dependent Operators605
B.1 Caution when Differentiating Operators605
B.2 Time Ordering606
B.2.1 Product of Two Terms607
B.2.2 Product of n Terms608
C Süβmann Measure611
C.1 Why Other Measures Fail611
C.2 One Way out of the Problem612
C.3 Generalization to Higher Dimensions613
D Phase Space Equations615
D.1 Formulation of the Problem615
D.2 Fourier Transform of Matrix Elements616
D.3 Kinetic Energy Terms617
D.4 Potential Energy Terms619
D.5 Summary620
E Airy Function621
E.1 Definition and Differential Equation621
E.2 Asymptotic Expansion622
E.2.1 Oscillatory Regime623
E.2.2 Decaying Regime624
E.2.3 Stokes Phenomenon625
F Radial Equation629
G Asymptotics of a Poissonian633
H Toolbox for Integrals635
H.1 Method of Stationary Phase635
H.1.1 One-Dimensional Integrals635
H.1.2 Multi-Dimensional Integrals637
H.2 Cornu Spiral639
I Area of Overlap643
I.1 Diamond Transformed into a Rectangle643
I.2 Area of Diamond644
I.3 Area of Overlap as Probability646
J P-Distributions649
J.1 Thermal State649
J.2 Photon Number State650
J.3 Squeezed State651
K Homodyne Kernel655
K.1 Explicit Evaluation of Kernel655
K.2 Strong Local Oscillator Limit656
L Beyond the Dipole Approximation659
L.1 First Order Taylor Expansion659
L.1.1 Expansion of the Hamiltonian659
L.1.2 Extension to Operators661
L.2 Classical Gauge Transformation661
L.2.1 Lagrangian with Center-of-Mass Motion662
L.2.2 Complete Time Derivative663
L.2.3 Hamiltonian Including Center-of-Mass Motion663
L.3 Quantum Mechanical Gauge Transformation664
L.3.1 Gauge Potential664
L.3.2 Schr?dinger equation for ?667
M Effctive Hamiltonian669
N Oscillator Reservoir671
N.1 Second Order Contribution671
N.1.1 Evaluation of Double Commutator671
N.1.2 Trace over Reservoir673
N.2 Symmetry Relations in Trace673
N.2.1 Complex Conjugates674
N.2.2 Commutator Between Field Operators674
N.3 Master Equation675
N.4 Explicit Expressions for Г,β and ?676
N.5 Integration over Time677
O Bessel Functions679
O.1 Definition679
O.2 Asymptotic Expansion680
P Square Root of δ683
Q Further Reading685
Index688