图书介绍

RHEOLOGY OF POLYMERIC SYSTEMS PRINCIPLES AND APPLICATIONSPDF|Epub|txt|kindle电子书版本网盘下载

RHEOLOGY OF POLYMERIC SYSTEMS PRINCIPLES AND APPLICATIONS
  • 出版社:
  • ISBN:9781569902189
  • 出版时间:未知
  • 标注页数:520页
  • 文件大小:22MB
  • 文件页数:532页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

RHEOLOGY OF POLYMERIC SYSTEMS PRINCIPLES AND APPLICATIONSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Definitions and Classification1

1.1-1 Purely Viscous or Inelastic Material3

1.1-2 Perfectly Elastic Material3

1.1-3 Viscoelastic Material3

1.2 Non-Newtonian Phenomena3

1.2-1 The Weissenberg Effect4

1.2-2 Entry Flow, Extrudate Swell, Melt Fracture, and Vibrating Jet4

1.2-3 Recoil7

1.2-4 Drag Reduction7

1.2-5 Hole Pressure Error13

1.2-6 Mixing14

1.2-7 Bubbles, Spheres, and Coalescence15

2 Material Functions and Generalized Newtonian Fluid18

2.1 Material Functions19

2.1-1 Simple Shear Flow19

2.1-2 Sinusoidal Shear Flow25

2.1-3 Transient Shear Flows26

2.1-4 Elongational Flow32

2.2 Generalized Newtonian Models35

2.2-1 Generalized Newtonian Fluid36

2.2-2 The Power-Law Model (Ostwald, 1925)37

2.2-3 The Ellis Model (Bird, Armstrong, and Hassager, 1977)37

2.2-4 The Carreau Model (1972)38

2.2-5 The Cross-Williamson Model (1965)39

2.2-6 The Four-Parameter Carreau Model (Carreau et al., 1979b)39

2.2-7 The De Kee Model (1977)40

2.2-8 The Carreau-Yasuda Model (Yasuda, 1976)41

2.2-9 The Bingham Model (1922)41

2.2-10 The Casson Model (1959)42

2.2-11 The Herschel-Bulkley Model (1926)42

2.2-12 The De Kee-Turcotte Model (1980)42

2.2-13 Viscosity Models for Complex Flow Situations43

2.3 Thixotropy, Rheopexy, and Hysteresis44

2.4 Relations Between Material Functions48

2.5 Temperature, Pressure, and Molecular Weight Effects50

2.5-1 Effect of Temperature on Viscosity50

2.5-2 Effect of Pressure on Viscosity52

2.5-3 Effect of Molecular Weight on Viscosity52

2.6 Problems57

3 Rheometry61

3.1 Capillary Rheometry62

3.1-1 Rabinowitsch Analysis64

3.1-2 End Effects or Bagley Correction68

3.1-3 Mooney Correction72

3.1-4 Intrinsic Viscosity Measurements73

3.2 Coaxial-Cylinder Rheometers76

3.2-1 Calculation of Viscosity77

3.2-2 End Effect Corrections81

3.2-3 Normal Stress Determination82

3.3 Cone-and-Plate Geometry84

3.3-1 Viscosity Determination86

3.3-2 Normal Stress Determination88

3.3-3 Inertial Effects90

3.3-4 Criteria for Transient Experiments94

3.4 Concentric Disk Geometry98

3.4-1 Viscosity Determination99

3.4-2 Normal Stress Difference Determination101

3.5 Yield Stress Measurements103

3.6 Problems106

4 Transport Phenomena in Simple Flows112

4.1 Criteria for Using Purely Viscous Models113

4.2 Isothermal Flow in Simple Geometries114

4.2-1 Flow of a Shear-Thinning Fluid in a Circular Tube114

4.2-2 Film Thickness for the Flow on an Inclined Plane116

4.2-3 Flow in a Thin Slit118

4.2-4 Helical Flow in an Annular Section119

4.2-5 Flow in a Disk-Shaped Mold122

4.3 Heat Transfer to Non-Newtonian Fluids126

4.3-1 Convective Heat Transfer in Poiseuille Flow126

4.3-2 Heat Generation in Poiseuille Flow134

4.4 Mass Transfer to Non-Newtonian Fluids138

4.4-1 Mass Transfer to a Power-Law Fluid Flowing on an Inclined Plate138

4.4-2 Mass Transfer to a Power-Law Fluid in Poiseuille Flow141

4.5 Boundary Layer Flows144

4.5-1 Laminar Boundary Layer Flow of Power-Law Fluids over a Plate144

4.5-2 Laminar Thermal Boundary Layer Flow over a Plate149

4.6 Problems152

5 Linear Viscoelasticity162

5.1 Importance and Definitions162

5.2 Linear Viscoelastic Models163

5.2-1 The Maxwell Model164

5.2-2 Generalized Maxwell Model170

5.2-3 The Jeffreys Model178

5.2-4 The Voigt-Kelvin Model180

5.2-5 Other Linear Models182

5.3 Relaxation Spectrum184

5.4 Time-Temperature Superposition186

5.5 Problems189

6 Nonlinear Viscoelasticity194

6.1 Nonlinear Deformations195

6.1-1 Expressions for the Deformation and Deformation Rate197

6.1-2 Pure Deformation or Uniaxial Elongation200

6.1-3 Planar Elongation204

6.1-4 Expansion or Compression205

6.1-5 Simple Shear205

6.2 Formulation of Constitutive Equations208

6.2-1 Material Objectivity and Formulation of Constitutive Equations209

6.2-2 Maxwell Convected Models210

6.2-3 Generalized Newtonian Models215

6.3 Differential Constitutive Equations220

6.3-1 The De Witt Model221

6.3-2 The Oldroyd Models222

6.3-3 The White-Metzner Model223

6.3-4 The Marrucci Model230

6.3-5 The Phan-Thien-Tanner Model232

6.4 Integral Constitutive Equations234

6.4-1 The Lodge Model235

6.4-2 The Carreau Constitutive Equation239

6.4-3 The K-BKZ Constitutive Equation247

6.4-4 The LeRoy-Pierrard Equation254

6.5 Concluding Remarks257

6.6 Problems258

7 Constitutive Equations from Molecular Theories263

7.1 Bead- and Spring-Type Models264

7.1-1 Hookean Elastic Dumbbell265

7.1-2 Finitely Extensible Nonlinear Elastic (FENE) Dumbbell272

7.1-3 Rouse and Zimm Models276

7.2 Network Theories284

7.2-1 General Network Concept284

7.2-2 Rubber-Like Solids286

7.2-3 Elastic Liquids288

7.2-4 Recent Developments290

7.3 Reptation Theories294

7.3-1 The Tube Model294

7.3-2 The Doi-Edwards Model296

7.3-3 The Curtiss-Bird Kinetic Theory300

7.4 Conformation Tensor Rheological Models304

7.4-1 Basic Description of the Conformation Model304

7.4-2 FENE-Charged Macromolecules307

7.4-3 Rod-Like and Worm-Like Macromolecules312

7.4-4 Generalization of the Conformation Tensor Model320

7.5 Problems327

8 Multiphase Systems329

8.1 Systems of Industrial Interest330

8.2 Rheology of Suspensions331

8.2-1 Viscosity of Dilute Suspensions of Rigid Spheres332

8.2-2 Rheology of Emulsions334

8.2-3 Rheology of Concentrated Suspensions of Non-Interactive Particles343

8.2-4 Rheology of Concentrated Suspensions of Interactive Particles347

8.2-5 Concluding Remarks351

8.3 Flow About a Rigid Particle352

8.3-1 Flow of a Power-Law Fluid Past a Sphere352

8.3-2 Other Fluid Models356

8.3-3 Viscoplastic Fluids356

8.3-4 Viscoelastic Fluids357

8.3-5 Wall Effects357

8.3-6 Non-Spherical Particles359

8.3-7 Drag-Reducing Fluids360

8.3-8 Behavior in Confined Flows361

8.4 Flow Around Fluid Spheres362

8.4-1 Creeping Flow of a Power-Law Fluid Past a Gas Bubble362

8.4-2 Experimental Results on Single Bubbles363

8.5 Creeping Flow of a Power-Law Fluid Around a Newtonian Droplet366

8.5-1 Experimental Results on Falling Drops367

8.6 Flow in Packed Beds368

8.6-1 Creeping Power-Law Flow in Beds of Spherical Particles: The Capillary Model368

8.6-2 Other Fluid Models373

8.6-3 Viscoelastic Effects373

8.6-4 Wall Effects374

8.6-5 Effects of Particle Shape375

8.6-6 Submerged Objects' Approach to Fluid Flow in Packed Beds:Creeping Flow376

8.7 Fluidized Beds377

8.7-1 Minimum Fluidizafion Velocity378

8.7-2 Bed Expansion Behavior380

8.7-3 Heat and Mass Transfer in Packed and Fluidized Beds382

8.8 Problems383

9 Liquid Mixing386

9.1 Introduction387

9.2 Mechanisms of Mixing388

9.2-1 Laminar Mixing389

9.2-2 Turbulent Mixing391

9.3 Scale-Up and Similarity Criteria391

9.4 Power Consumption in Agitated Tanks396

9.4-1 Low Viscosity Systems396

9.4-2 High Viscosity Inelastic Fluids397

9.4-3 Viscoelastic Systems412

9.5 Flow Patterns414

9.5-1 Class I Agitators415

9.5-2 Class II Agitators416

9.5-3 Class III Agitators418

9.6 Mixing and Circulation Times420

9.7 Gas Dispersion423

9.7-1 Gas Dispersion Mechanisms423

9.7-2 Power Consumption in Gas-Dispersed Systems425

9.7-3 Bubble Size and Holdup428

9.7-4 Mass Transfer Coefficient429

9.8 Heat Transfer430

9.8-1 Class Ⅰ Agitators431

9.8-2 Class Ⅱ Agitators432

9.8-3 Class Ⅲ Agitators434

9.9 Mixing Equipment and its Selection436

9.9-1 Mechanical Agitation436

9.9-2 Extruders436

9.10 Problems439

Appendix A General Curvilinear Coordinate Systems and Higher Order Tensors441

A.1 Cartesian Vectors and Summation Convention442

A.2 General Curvilinear Coordinate Systems445

A.2-1 Generalized Base Vectors445

A.2-2 Transformation Rules for Vectors449

A.2-3 Tensors of Arbitrary Order452

A.2-4 Metric and Permutation Tensors454

A.2-5 Physical Components458

A.3 Covariant Differentiation462

A.3-1 Definitions462

A.3-2 Properties of Christoffel Symbols464

A.3-3 Rules of Covariant Differentiation465

A.3-4 Grad, Div, and Curl468

A.4 Integral Transforms474

A.5 Isotropic Tensors, Objective Tensors and Tensor-Valued Functions476

A.5-1 Isotropic Tensors476

A.5-2 Objective Tensors478

A.5-3 Tensor-Valued Functions480

A.6 Problems483

Appendix B Equations of Change487

B.1 The Equation of Continuity in Three Coordinate Systems487

B.2 The Equation of Motion in Rectangular Coordinates (x, y, z)487

B.2-1 In Terms of σ487

B.2-2 In Terms of Velocity Gradients for a Newtonian Fluid with Constant ρ and μ488

B.3 The Equation of Motion in Cylindrical Coordinates (r,? , z)488

B.3-1 In Terms of a488

B.3-2 In Terms of Velocity Gradients for a Newtonian Fluid with Constant p and p489

B.4 The Equation of Motion in Spherical Coordinates (r,?,φ)490

B.4-1 In Terms of a490

B.4-2 In Terms of Velocity Gradients for a Newtonian Fluid with Constant p and u490

References492

Notation503

Subject Index513

热门推荐