图书介绍
RHEOLOGY OF POLYMERIC SYSTEMS PRINCIPLES AND APPLICATIONSPDF|Epub|txt|kindle电子书版本网盘下载
- 著
- 出版社:
- ISBN:9781569902189
- 出版时间:未知
- 标注页数:520页
- 文件大小:22MB
- 文件页数:532页
- 主题词:
PDF下载
下载说明
RHEOLOGY OF POLYMERIC SYSTEMS PRINCIPLES AND APPLICATIONSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Definitions and Classification1
1.1-1 Purely Viscous or Inelastic Material3
1.1-2 Perfectly Elastic Material3
1.1-3 Viscoelastic Material3
1.2 Non-Newtonian Phenomena3
1.2-1 The Weissenberg Effect4
1.2-2 Entry Flow, Extrudate Swell, Melt Fracture, and Vibrating Jet4
1.2-3 Recoil7
1.2-4 Drag Reduction7
1.2-5 Hole Pressure Error13
1.2-6 Mixing14
1.2-7 Bubbles, Spheres, and Coalescence15
2 Material Functions and Generalized Newtonian Fluid18
2.1 Material Functions19
2.1-1 Simple Shear Flow19
2.1-2 Sinusoidal Shear Flow25
2.1-3 Transient Shear Flows26
2.1-4 Elongational Flow32
2.2 Generalized Newtonian Models35
2.2-1 Generalized Newtonian Fluid36
2.2-2 The Power-Law Model (Ostwald, 1925)37
2.2-3 The Ellis Model (Bird, Armstrong, and Hassager, 1977)37
2.2-4 The Carreau Model (1972)38
2.2-5 The Cross-Williamson Model (1965)39
2.2-6 The Four-Parameter Carreau Model (Carreau et al., 1979b)39
2.2-7 The De Kee Model (1977)40
2.2-8 The Carreau-Yasuda Model (Yasuda, 1976)41
2.2-9 The Bingham Model (1922)41
2.2-10 The Casson Model (1959)42
2.2-11 The Herschel-Bulkley Model (1926)42
2.2-12 The De Kee-Turcotte Model (1980)42
2.2-13 Viscosity Models for Complex Flow Situations43
2.3 Thixotropy, Rheopexy, and Hysteresis44
2.4 Relations Between Material Functions48
2.5 Temperature, Pressure, and Molecular Weight Effects50
2.5-1 Effect of Temperature on Viscosity50
2.5-2 Effect of Pressure on Viscosity52
2.5-3 Effect of Molecular Weight on Viscosity52
2.6 Problems57
3 Rheometry61
3.1 Capillary Rheometry62
3.1-1 Rabinowitsch Analysis64
3.1-2 End Effects or Bagley Correction68
3.1-3 Mooney Correction72
3.1-4 Intrinsic Viscosity Measurements73
3.2 Coaxial-Cylinder Rheometers76
3.2-1 Calculation of Viscosity77
3.2-2 End Effect Corrections81
3.2-3 Normal Stress Determination82
3.3 Cone-and-Plate Geometry84
3.3-1 Viscosity Determination86
3.3-2 Normal Stress Determination88
3.3-3 Inertial Effects90
3.3-4 Criteria for Transient Experiments94
3.4 Concentric Disk Geometry98
3.4-1 Viscosity Determination99
3.4-2 Normal Stress Difference Determination101
3.5 Yield Stress Measurements103
3.6 Problems106
4 Transport Phenomena in Simple Flows112
4.1 Criteria for Using Purely Viscous Models113
4.2 Isothermal Flow in Simple Geometries114
4.2-1 Flow of a Shear-Thinning Fluid in a Circular Tube114
4.2-2 Film Thickness for the Flow on an Inclined Plane116
4.2-3 Flow in a Thin Slit118
4.2-4 Helical Flow in an Annular Section119
4.2-5 Flow in a Disk-Shaped Mold122
4.3 Heat Transfer to Non-Newtonian Fluids126
4.3-1 Convective Heat Transfer in Poiseuille Flow126
4.3-2 Heat Generation in Poiseuille Flow134
4.4 Mass Transfer to Non-Newtonian Fluids138
4.4-1 Mass Transfer to a Power-Law Fluid Flowing on an Inclined Plate138
4.4-2 Mass Transfer to a Power-Law Fluid in Poiseuille Flow141
4.5 Boundary Layer Flows144
4.5-1 Laminar Boundary Layer Flow of Power-Law Fluids over a Plate144
4.5-2 Laminar Thermal Boundary Layer Flow over a Plate149
4.6 Problems152
5 Linear Viscoelasticity162
5.1 Importance and Definitions162
5.2 Linear Viscoelastic Models163
5.2-1 The Maxwell Model164
5.2-2 Generalized Maxwell Model170
5.2-3 The Jeffreys Model178
5.2-4 The Voigt-Kelvin Model180
5.2-5 Other Linear Models182
5.3 Relaxation Spectrum184
5.4 Time-Temperature Superposition186
5.5 Problems189
6 Nonlinear Viscoelasticity194
6.1 Nonlinear Deformations195
6.1-1 Expressions for the Deformation and Deformation Rate197
6.1-2 Pure Deformation or Uniaxial Elongation200
6.1-3 Planar Elongation204
6.1-4 Expansion or Compression205
6.1-5 Simple Shear205
6.2 Formulation of Constitutive Equations208
6.2-1 Material Objectivity and Formulation of Constitutive Equations209
6.2-2 Maxwell Convected Models210
6.2-3 Generalized Newtonian Models215
6.3 Differential Constitutive Equations220
6.3-1 The De Witt Model221
6.3-2 The Oldroyd Models222
6.3-3 The White-Metzner Model223
6.3-4 The Marrucci Model230
6.3-5 The Phan-Thien-Tanner Model232
6.4 Integral Constitutive Equations234
6.4-1 The Lodge Model235
6.4-2 The Carreau Constitutive Equation239
6.4-3 The K-BKZ Constitutive Equation247
6.4-4 The LeRoy-Pierrard Equation254
6.5 Concluding Remarks257
6.6 Problems258
7 Constitutive Equations from Molecular Theories263
7.1 Bead- and Spring-Type Models264
7.1-1 Hookean Elastic Dumbbell265
7.1-2 Finitely Extensible Nonlinear Elastic (FENE) Dumbbell272
7.1-3 Rouse and Zimm Models276
7.2 Network Theories284
7.2-1 General Network Concept284
7.2-2 Rubber-Like Solids286
7.2-3 Elastic Liquids288
7.2-4 Recent Developments290
7.3 Reptation Theories294
7.3-1 The Tube Model294
7.3-2 The Doi-Edwards Model296
7.3-3 The Curtiss-Bird Kinetic Theory300
7.4 Conformation Tensor Rheological Models304
7.4-1 Basic Description of the Conformation Model304
7.4-2 FENE-Charged Macromolecules307
7.4-3 Rod-Like and Worm-Like Macromolecules312
7.4-4 Generalization of the Conformation Tensor Model320
7.5 Problems327
8 Multiphase Systems329
8.1 Systems of Industrial Interest330
8.2 Rheology of Suspensions331
8.2-1 Viscosity of Dilute Suspensions of Rigid Spheres332
8.2-2 Rheology of Emulsions334
8.2-3 Rheology of Concentrated Suspensions of Non-Interactive Particles343
8.2-4 Rheology of Concentrated Suspensions of Interactive Particles347
8.2-5 Concluding Remarks351
8.3 Flow About a Rigid Particle352
8.3-1 Flow of a Power-Law Fluid Past a Sphere352
8.3-2 Other Fluid Models356
8.3-3 Viscoplastic Fluids356
8.3-4 Viscoelastic Fluids357
8.3-5 Wall Effects357
8.3-6 Non-Spherical Particles359
8.3-7 Drag-Reducing Fluids360
8.3-8 Behavior in Confined Flows361
8.4 Flow Around Fluid Spheres362
8.4-1 Creeping Flow of a Power-Law Fluid Past a Gas Bubble362
8.4-2 Experimental Results on Single Bubbles363
8.5 Creeping Flow of a Power-Law Fluid Around a Newtonian Droplet366
8.5-1 Experimental Results on Falling Drops367
8.6 Flow in Packed Beds368
8.6-1 Creeping Power-Law Flow in Beds of Spherical Particles: The Capillary Model368
8.6-2 Other Fluid Models373
8.6-3 Viscoelastic Effects373
8.6-4 Wall Effects374
8.6-5 Effects of Particle Shape375
8.6-6 Submerged Objects' Approach to Fluid Flow in Packed Beds:Creeping Flow376
8.7 Fluidized Beds377
8.7-1 Minimum Fluidizafion Velocity378
8.7-2 Bed Expansion Behavior380
8.7-3 Heat and Mass Transfer in Packed and Fluidized Beds382
8.8 Problems383
9 Liquid Mixing386
9.1 Introduction387
9.2 Mechanisms of Mixing388
9.2-1 Laminar Mixing389
9.2-2 Turbulent Mixing391
9.3 Scale-Up and Similarity Criteria391
9.4 Power Consumption in Agitated Tanks396
9.4-1 Low Viscosity Systems396
9.4-2 High Viscosity Inelastic Fluids397
9.4-3 Viscoelastic Systems412
9.5 Flow Patterns414
9.5-1 Class I Agitators415
9.5-2 Class II Agitators416
9.5-3 Class III Agitators418
9.6 Mixing and Circulation Times420
9.7 Gas Dispersion423
9.7-1 Gas Dispersion Mechanisms423
9.7-2 Power Consumption in Gas-Dispersed Systems425
9.7-3 Bubble Size and Holdup428
9.7-4 Mass Transfer Coefficient429
9.8 Heat Transfer430
9.8-1 Class Ⅰ Agitators431
9.8-2 Class Ⅱ Agitators432
9.8-3 Class Ⅲ Agitators434
9.9 Mixing Equipment and its Selection436
9.9-1 Mechanical Agitation436
9.9-2 Extruders436
9.10 Problems439
Appendix A General Curvilinear Coordinate Systems and Higher Order Tensors441
A.1 Cartesian Vectors and Summation Convention442
A.2 General Curvilinear Coordinate Systems445
A.2-1 Generalized Base Vectors445
A.2-2 Transformation Rules for Vectors449
A.2-3 Tensors of Arbitrary Order452
A.2-4 Metric and Permutation Tensors454
A.2-5 Physical Components458
A.3 Covariant Differentiation462
A.3-1 Definitions462
A.3-2 Properties of Christoffel Symbols464
A.3-3 Rules of Covariant Differentiation465
A.3-4 Grad, Div, and Curl468
A.4 Integral Transforms474
A.5 Isotropic Tensors, Objective Tensors and Tensor-Valued Functions476
A.5-1 Isotropic Tensors476
A.5-2 Objective Tensors478
A.5-3 Tensor-Valued Functions480
A.6 Problems483
Appendix B Equations of Change487
B.1 The Equation of Continuity in Three Coordinate Systems487
B.2 The Equation of Motion in Rectangular Coordinates (x, y, z)487
B.2-1 In Terms of σ487
B.2-2 In Terms of Velocity Gradients for a Newtonian Fluid with Constant ρ and μ488
B.3 The Equation of Motion in Cylindrical Coordinates (r,? , z)488
B.3-1 In Terms of a488
B.3-2 In Terms of Velocity Gradients for a Newtonian Fluid with Constant p and p489
B.4 The Equation of Motion in Spherical Coordinates (r,?,φ)490
B.4-1 In Terms of a490
B.4-2 In Terms of Velocity Gradients for a Newtonian Fluid with Constant p and u490
References492
Notation503
Subject Index513