图书介绍

机器学习 第2卷 上下PDF|Epub|txt|kindle电子书版本网盘下载

机器学习 第2卷 上下
  • R.S.米哈尔斯基等著 著
  • 出版社: 人工智能资料中心
  • ISBN:0934613001
  • 出版时间:1987
  • 标注页数:394页
  • 文件大小:29MB
  • 文件页数:747页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

机器学习 第2卷 上下PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART ONE GENERAL ISSUES1

Chapter 1 Understanding the Nature of Learning:Issues and Research Directions3

CONTENTSPreface9

Ryszard S.MichalskiChapter 2 Machine Learning:Challenges of theEighties27

Ryszard S.Michalski,Saul Amarel,Douglas B.Lenat,Donald Michie,andPatrick H.Winston(Edited by Gail Thornburg and Ryszard Michalski)PART TWO LEARNING CONCEPTS AND RULES FROMEXAMPLES43

Chapter 3 Learning by Augmenting Rules andAccumulating Censors 45

Patrick H.WinstonChapter 4 Learning to Predict Sequences63

Thomas G.Dietterich and Ryszard S.MichalskiChapter 5 Shift of Bias for Inductive Concept Learning107

Paul E. UtgoffChapter 6 The Effect of Noise on Concept Learning149

J.Ross QUinlanChapter 7 Learning Concepts by Asking Questions167

Claude Sammut and Ranan B.BanerjiChapter 8 Concept Learning in a Rich Input Domain:Generalization-Based Memory193

Michael LebowitzChapter 9 Improving the Generalization Step inLearn ing215

Yves Kodra toff and Jean-Gabriel GanasciaPART THREE COGNITIVE ASPECTS 0F LEARNING245

Chapter 10 The Chunking of Goal Hierarchies:AGeneralized Model of Practice247

Paul S.Rosenbloom and Allen NewellChapter 11 Knowledge Compilation:The GeneralLearning Mechanism289

John R.AndersonChapter 12 Learning Physical Domains:Toward aTheoreticel Framework311

Kenneth D.Forbus and Dedre GentnerPART FOUR LEARNING BY ANALOGY349

Chapter 13 Concept Formation by IncrementalAnalogical Reasoning and Debugging351

Mark H.BursteinChapter 14 Derivational Analogy:A Theory ofReconstructive Problem Solving andExpertise Acquisition371

JaimeG.CarbonellPART FIVE LEARNING BY OBSERVATION ANDDISCOVERY393

Chapter 15 Programming by Analogy395

Nachum DershowitzChapter 16 The Search for Regularity:Four Aspects ofScientific Discovery 425

Pat Langley,Jan M.Zytkow,Herbert A.Simon,and Gary L.BradshawChapter 17 Conceptual Clustering:InventingGoal-Oriented Classifications of StructuredObjects 471

Robert E.Stepp Ⅲ and Ryszard S.MichalskiChapter 18 Program Synthesis as a Theory FormationTask:Problem Representations and SolutionMethods 499

Saul AmarelChapter 19 An Approach to Learning from Observation571

Gerald DeJongPART SIX AN EXPLORATION OF GENERAL ASPECTS591

OF LEARNINGChapter 20 Escaping Brittleness:The Possibilities ofGeneral-Purpose Learning AlgorithmsApplied to Parallel Rule-Based Systems593

John H.HollandChapter 21 Learning from Positive-Only Examples:TheSubset Principle and Three Case Studies625

Robert C.BerwickChapter 22 Precondition Analysis:Learning ControlInformation647

Bernard SilverBibliography of Recent Machine Learning Research 671

Smadar T.Kedar-Cabelli and Sridhar MahadevanUpdated Glossary of Selected Terms In Machine Learning707

About the Authors715

Author Index725

Subject Index729

热门推荐