图书介绍
新视野中学数学读本:高中年级版PDF|Epub|txt|kindle电子书版本网盘下载
![新视野中学数学读本:高中年级版](https://www.shukui.net/cover/25/30993300.jpg)
- 孔凡海编著 著
- 出版社: 南京:译林出版社
- ISBN:7806573291
- 出版时间:2002
- 标注页数:425页
- 文件大小:45MB
- 文件页数:437页
- 主题词:
PDF下载
下载说明
新视野中学数学读本:高中年级版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Sets1
1.1 Equality of Sets1
1.2 Empty Set,Subsets2
1.3 Venn Diagrams2
1.4 Operations on Sets3
1.5 Number of Elements in a Finite Set5
1.6 Worked Examples5
1.7 Exercises6
Chapter 2 Real Number System9
2.1 Integers9
2.2 Rational Numbers10
2.3 Irrational Numbers11
2.4 Operations and Their Properties12
2.5 The Real Number Line16
2.6 Ordering the Real Numbers16
2.7 The Absolute Value of a Real Number17
2.8 Worked Examples17
2.9 Exercises20
Chapter 3 The Language of Algebra23
3.1 Describing Situation with Algebra24
3.2 Formulas26
3.3 Explicit and Recursive Formulas for Sequences28
3.4 Solving Equations and Inequalities31
3.5 Worked Examples33
3.6 Exercises35
Chapter 4 Statement Calculus37
4.1 Composition of Statements37
4.2 Equivalent Formulae39
4.3 Valid Formulae and Falsities40
4.4 Universal Quantifier and Existential Quantifier42
4.5 Worked Examples43
4.6 Exercises44
Chapter 5 Functions46
5.1 Introduction to Coordinates46
5.2 Functions48
5.3 Composition of Functions53
5.4 Some Special Real Functions56
5.5 Some Examples of Real Functions60
5.6 Worked Examples63
5.7 Exercises69
Chapter 6 Power,Exponential and Logarithmic Functions75
6.1 nth Root Functions76
6.2 Rational Power Functions79
6.3 Exponential Functions82
6.4 Logarithmic Functions86
6.5 e and Natural Logarithms89
6.6 Properties of Logarithms92
6.7 Solving Exponential Equations94
6.8 The Scientific Calculator95
6.9 Worked Examples100
6.10 Exercises103
Chapter 7 Polynomial Functions105
7.1 Polynomial Models105
7.2 Finding Polynomial Models110
7.3 The Factor Theorem111
7.4 Complex Numbers113
7.5 The Fundamental Theorem of Algebra115
7.6 Roots and Coefficients of Polynomials118
7.7 Modeling Data with Polynomials120
7.8 Worked Examples122
7.9 Exercises125
Chapter 8 Sequences,Series and Counting Principles127
8.1 Arithmetic and Geometric Sequences127
8.2 Limits of Sequences130
8.3 Arithmetic and Geometric Series133
8.4 Mathematical Induction141
8.5 The Binomial Theorem146
8.6 Worked Examples153
8.7 Exercises156
Chapter 9 Trigonometry161
9.1 Radian and Degree Measure162
9.2 Lengths of Arc and Areas of Sectors164
9.3 Trigonometric Ratios of Acute Angeles165
9.4 The Sine,Cosine and Tangent Functions167
9.5 Graphs of the Sine,Cosine and Tangent Functions170
9.6 Properties of Sines,Cosines and Tangents174
9.7 The Law of Sines and Cosines177
9.8 From Washington to Beijing179
9.9 The Secant,Cosecant and Cotangent Functions187
9.10 Inverse Trigonometric Functions187
9.11 Analytic Trigonometry189
9.12 Trigonometric Form of a Complex Number193
9.13 Worked Examples197
9.14 Exercises201
Chapter 10 Matrices204
10.1 Storing Data in Matrices205
10.2 Matrix Multiplication207
10.3 Size Changes211
10.4 Scale Changes213
10.5 Reflections215
10.6 Transformations and Matrices216
10.7 Rotations217
10.8 Perpendicular Lines221
10.9 Matrix Addition222
10.10 Worked Examples225
10.11 Exercises229
Chapter 11 Linear Programming231
11.1 Solving Linear Inequalities in Two Variables Graphically231
11.2 Linear Programming Ⅰ237
11.3 Linear Programming Ⅱ243
11.4 Worked Examples246
11.5 Exercises249
Chapter 12 Inequalities251
12.1 Elementary Properties251
12.2 Arithmetic Mean and Geometric Mean252
12.3 Cauchy-Schwarz Inequality254
12.4 Absolute Values255
12.5 Worked Examples256
12.6 Exercises260
Chapter 13 Complex Numbers262
13.1 Operations on Complex Numbers263
13.2 Complex Conjugate264
13.3 Argand Diagram265
13.4 Modulus of a Complex Number265
13.5 Argument of a Complex Number267
13.6 Vectorial Representation of a Complex Number268
13.7 Geometric Application of Complex Numbers269
13.8 De Moivre's Theorem270
13.9 The Mandelbrot Set271
13.10 Worked Examples273
13.11 Exercises276
Chapter 14 Two Dimensional Coordinate Geometry279
14.1 Straight Lines280
14.2 Circles282
14.3 Quadratic Relation283
14.4 Parabolae285
14.5 Ellipses286
14.6 Hyperbolae288
14.7 Worked Examples290
14.8 Exercises294
Chapter 15 Probability and Statistics296
15.1 Fundamental Properties of Probability296
15.2 Descriptive Statistics300
15.3 Probability Distributions302
15.4 Binomial Probabilities305
15.5 Binomial Probability Distributions307
15.6 Mean and Standard Deviation of a Binomial Distribution310
15.7 Representing Probabilities by Areas313
15.8 The Parent of the Normal Curve314
15.9 The Standard Normal Distribution318
15.10 Using Probability to Make Judgments320
15.11 Worked Examples323
15.12 Exercises330
Chapter 16 Calculus334
16.1 Limit of a Sequence334
16.2 Limit of a Function at Infinity345
16.3 Limit ofa Function at a Point347
16.4 Two Important Limits349
16.5 Left and Right Hand Limits349
16.6 Continuous Functions350
16.7 Properties of Continuous Functions352
16.8 Worked Examples Ⅰ353
16.9 Exercises Ⅰ356
16.10 Derivatives357
16.11 Differentiability360
16.12 Rules of Differentiation362
16.13 Mean Value Theorem364
16.14 Applications of Differential Calculus366
16.15 Worked Examples Ⅱ372
16.16 Exercises Ⅱ375
16.17 Indefinite Integrals376
16.18 Definite Integrals377
16.19 Applications of Definite Integrals381
16.20 Worked Examples Ⅲ383
16.21 Exercises Ⅲ384
GLOSSARY385