图书介绍

原子、分子和光子 第2版 英文PDF|Epub|txt|kindle电子书版本网盘下载

原子、分子和光子 第2版 英文
  • (德)登特德(DemtrderW.)著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510068126
  • 出版时间:2014
  • 标注页数:591页
  • 文件大小:99MB
  • 文件页数:607页
  • 主题词:原子物理学-研究-英文;分子物理学-研究-英文;光子-研究-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

原子、分子和光子 第2版 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.Introduction1

1.1 Contents and Importance of Atomic Physics1

1.2 Molecules:Building Blocks of Nature3

1.3 Survey on the Concept of this Textbook4

2.The Concept of the Atom7

2.1 Historical Development7

2.2 Experimental and Theoretical Proofs for the Existence of Atoms9

2.2.1 Dalton's Law of Constant Proportions9

2.2.2 The Law of Gay-Lussac and the Definition of the Mole11

2.2.3 Experimental Methods for the Determination of Avogadro's Constant12

2.2.4 The Importance of Kinetic Gas Theory for the Concept of Atoms17

2.3 Can One See Atoms?20

2.3.1 Brownian Motion20

2.3.2 Cloud Chamber24

2.3.3 Microscopes with Atomic Resolution24

2.4 The Size of Atoms29

2.4.1 The Size of Atoms in the Van der Waals Equation29

2.4.2 Atomic Size Estimation from Transport Coefficients29

2.4.3 Atomic Volumes from X-Ray Diffraction31

2.4.4 Comparison of the Different Methods32

2.5 The Electric Structure of Atoms33

2.5.1 Cathode Rays and Kanalstrahlen34

2.5.2 Measurement of the Elementary Charge e35

2.5.3 How to Produce Free Electrons37

2.5.4 Generation of Free Ions39

2.5.5 The Mass of the Electron41

2.5.6 How Neutral is the Atom?44

2.6 Electron and Ion Optics45

2.6.1 Refraction of Electron Beams45

2.6.2 Electron Optics in Axially Symmetric Fields47

2.6.3 Electrostatic Electron Lenses49

2.6.4 Magnetic Lenses50

2.6.5 Applications of Electron and Ion Optics52

2.7 Atomic Masses and Mass Spectrometers53

2.7.1 J.J.Thomson's Parabola Spectrograph54

2.7.2 Velocity-Independent Focusing55

2.7.3 Focusing of Ions with Different Angles of Incidence57

2.7.4 Mass Spectrometer with Double Focusing57

2.7.5 Time-of-Flight Mass Spectrometer58

2.7.6 Quadrupole Mass Spectrometer61

2.7.7 Ion-Cyclotron-Resonance Spectrometer63

2.7.8 Isotopes64

2.8 The Structure of Atoms65

2.8.1 Integral and Differential Cross Sections65

2.8.2 Basic Concepts of Classical Scattering66

2.8.3 Determination of the Charge Distribution within the Atom from Scattering Experiments70

2.8.4 Thomson's Atomic Model71

2.8.5 The Ruthefford Atomic Model73

2.8.6 Rutherford's Scattering Formula74

Summary77

Problems79

3.Development of Quantum Physics81

3.1 Experimental Hints to the Particle Character of Electromagnetic Radiation81

3.1.1 Blackbody Radiation82

3.1.2 Cavity Modes84

3.1.3 Planck's Radiation Law86

3.1.4 Wien's Law88

3.1.5 Stefan-Boltzmann's Radiation Law88

3.1.6 Photoelectric Effect89

3.1.7 Compton Effect91

3.1.8 Properties of Photons93

3.1.9 Photons in Gravitational Fields94

3.1.10 Wave and Particle Aspects of Light95

3.2 Wave Properties of Particles97

3.2.1 De Broglie Wavelength and Electron Diffraction97

3.2.2 Diffraction and Interference of Atoms98

3.2.3 Bragg Reflection and the Neutron Spectrometer100

3.2.4 Neutron and Atom Interferometry100

3.2.5 Application of Particle Waves101

3.3 Matter Waves and Wave Functions102

3.3.1 Wave Packets103

3.3.2 The Statistical Interpretation of Wave Functions105

3.3.3 Heisenberg's Uncertainty Principle106

3.3.4 Dispersion of the Wave Packet109

3.3.5 Uncertainty Relation for Energy and Time110

3.4 The Quantum Structure of Atoms111

3.4.1 Atomic Spectra112

3.4.2 Bohr's Atomic Model113

3.4.3 The Stability of Atoms117

3.4.4 Franck-Hertz Experiment118

3.5 What are the Differences Between Classical and Quantum Physics?120

3.5.1 Classical Particle Paths Versus Probability Densities in Quantum Physics120

3.5.2 Interference Phenomena with Light Wayes and Matter Waves121

3.5.3 The Effect of the Measuring Process123

3.5.4 The Importance of Quantum Physics for our Concept of Nature124

Summary125

Problems127

4.Basic Concepts of Quantum Mechanics129

4.1 The Schr?dinger Equation129

4.2 Some Examples131

4.2.1 The Free Particle131

4.2.2 Potential Barrier132

4.2.3 Tunnel Effect135

4.2.4 Particle in a Potential Box138

4.2.5 Harmonic Oscillator141

4.3 Two-and Three-Dimensional Problems144

4.3.1 Particle in a Two-dimensional Box144

4.3.2 Particle in a Spherically Symmetric Potential145

4.4 Expectation Values and Operators149

4.4.1 Operators and Eigenvalues150

4.4.2 Angular Momentum in Quantum Mechanics152

Summary155

Problems157

5.The Hydrogen Atom159

5.1 Schr?dinger Equation for One-electron Systems159

5.1.1 Separation of the Center of Mass and Relative Motion159

5.1.2 Solution of the Radial Equation161

5.1.3 Quantum Numbers and Wave Functions of the H Atom163

5.1.4 Spatial Distributions and Expectation Values of the Electron in Different Quantum States166

5.2 The Normal Zeeman Effect168

5.3 Comparison of Schr?dinger Theory with Experimental Results170

5.4 Relativistic Correction of Energy Terms172

5.5 The Electron Spin174

5.5.1 The Stern-Gerlach Experiment175

5.5.2 Experimental Confirmation of Electron Spin176

5.5.3 Einstein-de Haas Effect177

5.5.4 Spin-Orbit Coupling and Fine Structure178

5.5.5 Anomalous Zeeman Effect181

5.6 Hyperfine Structure184

5.6.1 Basic Considerations184

5.6.2 Fermi-contact Interaction186

5.6.3 Magnetic Dipole-Dipole Interaction187

5.6.4 Zeeman Effect of Hyperfine Structure Levels187

5.7 Complete Description of the Hydrogen Atom188

5.7.1 Total Wave Function and Quantum Numbers188

5.7.2 Term Assignment and Level Scheme188

5.7.3 Lamb Shift191

5.8 Correspondence Principle194

5.9 The Electron Model and its Problems195

Summary198

Problems200

6.Atoms with More Than One Electron201

6.1 The Helium Atom201

6.1.1 Approximation Models202

6.1.2 Symmetry of the Wave Function203

6.1.3 Consideration of the Electron Spin204

6.1.4 The Pauli Principle205

6.1.5 Energy Levels of the Helium Atom206

6.1.6 Helium Spectrum208

6.2 Building-up Principle of the Electron Shell for Larger Atoms209

6.2.1 The Model of Electron Shells209

6.2.2 Successive Building-up of Electron Shells for Atoms with Increasing Nuclear Charge210

6.2.3 Atomic Volumes and Ionization Energies212

6.2.4 The Periodic System of the Elements216

6.3 Alkali Atoms218

6.4 Theoretical Models for Multielectron Atoms221

6.4.1 The Model of Independent Electrons221

6.4.2 The Hartree Method222

6.4.3 The Hartree-Fock Method224

6.4.4 Configuration Interaction224

6.5 Electron Configurations and Couplings of Angular Momenta224

6.5.1 Coupling Schemes for Electronic Angular Momenta224

6.5.2 Electron Configuration and Atomic States229

6.6 Excited Atomic States231

6.6.1 Single Electron Excitation232

6.6.2 Simultaneous Excitation of Two Electrons232

6.6.3 Inner-Shell Excitation and the Auger Process233

6.6.4 Rydberg States234

6.6.5 Planetary Atoms236

6.7 Exotic Atoms237

6.7.1 Muonic Atoms238

6.7.2 Pionic and Kaonic Atoms239

6.7.3 Anti-hydrogen Atoms and Other Anti-atoms240

6.7.4 Positronium and Muonium241

Summary243

Problems245

7. Emission and Absorption of Electromagnetic Radiation by Atoms248

7.1 Transition Probabilities248

7.1.1 Induced and Spontaneous Transitions,Einstein Coefficients248

7.1.2 Transition Probabilities,Einstein Coefficients and Matrix Elements250

7.1.3 Transition Probabilities for Absorption and Induced Emission253

7.2 Selection Rules253

7.2.1 Selection Rules for Spontaneous Emission253

7.2.2 Selection Rules for the Magnetic Quantum Number254

7.2.3 Parity Selection Rules255

7.2.4 Selection Rules for Induced Absorption and Emission256

7.2.5 Selection Rules for the Spin Quantum Number256

7.2.6 Higher Order Multipole Transitions257

7.2.7 Magnetic Dipole Transitions259

7.2.8 Two-Photon-Transitions259

7.3 Lifetimes of Excited States260

7.4 Line Profiles of Spectral Lines261

7.4.1 Natural Linewidth262

7.4.2 Doppler Broadening264

7.4.3 Collision Broadening267

7.5 X-Rays270

7.5.1 Bremsstrahlung271

7.5.2 Characteristic X-Ray-Radiation272

7.5.3 Scattering and Absorption of X-Rays273

7.5.4 X-ray Fluorescence278

7.5.5 Measurements of X-Ray Wavelengths278

7.6 Continuous Absorption and Emission Spectra280

7.6.1 Photoionization281

7.6.2 Recombination Radiation284

Summary286

Problems287

8.Lasers289

8.1 Physical Principles289

8.1.1 Threshold Condition290

8.1.2 Generation of Population Inversion292

8.1.3 The Frequency Spectrum of Induced Emission295

8.2 Optical Resonators295

8.2.1 The Quality Factor of Resonators295

8.2.2 Open Optical Resonators296

8.2.3 Modes of Open Resonators297

8.2.4 Diffraction Losses of Open Resonators300

8.2.5 The Frequency Spectrum of Optical Resonators301

8.3 Single Mode Lasers301

8.4 Different Types of Lasers304

8.4.1 Solid-state Lasers305

8.4.2 Semiconductor Lasers307

8.4.3 Dye Lasers308

8.4.4 Gas Lasers310

8.5 Nonlinear Optics313

8.5.1 Optical Frequency Doubling314

8.5.2 Phase Matching314

8.5.3 Optical Frequency Mixing316

8.6 Generation of Short Laser Pulses316

8.6.1 Q-Switched Lasers316

8.6.2 Mode-Locking of Lasers318

8.6.3 Optical Pulse Compression321

8.6.4 Measurements of Ultrashort Optical Pulses322

Summary324

Problems324

9.Diatomic Molecules327

9.1 The H+ 2 Molecular Ion327

9.1.1 The Exact Solution for the Rigid H+ 2 Molecule328

9.1.2 Molecular Orbitals and LCAO Approximations331

9.1.3 Improvements to the LCAO ansatz334

9.2 The H2 Molecule335

9.2.1 Molecular Orbital Approximation336

9.2.2 The Heitler-London Method337

9.2.3 Comparison Between the Two Approximations338

9.2.4 Improvements to the Approximations339

9.3 Electronic States of Diatomic Molecules340

9.3.1 The Energetic Order of Electronic States340

9.3.2 Symmetry Properties of Electronic States341

9.3.3 Electronic Angular Momenta341

9.3.4 Electron Spins,Multiplicity and Fine Structure Splittings343

9.3.5 Electron Configurations and Molecular Ground States344

9.3.6 Excited Molecular States346

9.3.7 Excimers347

9.3.8 Correlation Diagrams348

9.4 The Physical Reasons for Molecular Binding349

9.4.1 The Chemical Bond349

9.4.2 Multipole Interaction350

9.4.3 Induced Dipole Moments and van der Waals Potential352

9.4.4 General Expansion of the Interaction Potential355

9.4.5 The Morse Potential355

9.4.6 Different Binding Types356

9.5 Rotation and Vibration of Diatomic Molecules357

9.5.1 The Born-Oppenheimer Approximation357

9.5.2 The Rigid Rotor359

9.5.3 Centrifugal Distortion361

9.5.4 The Influence of the Electron Motion361

9.5.5 Vibrations of Diatomic Molecules363

9.5.6 Interaction Between Rotation and Vibration364

9.5.7 The Dunham Expansion366

9.5.8 Rotational Barrier366

9.6 Spectra of Diatomic Molecules367

9.6.1 Transition Matrix Elements367

9.6.2 Vibrational-Rotational Transitions369

9.6.3 The Structure of Electronic Transitions372

9.6.4 Continuous Spectra377

Summary380

Problems381

10.Polyatomic Molecules383

10.1 Electronic States of Polyatomic Molecules383

10.1.1 The H2O Molecule383

10.1.2 Hybridization384

10.1.3 The CO2 Molecule388

10.1.4 Walsh Diagrams389

10.2 Molecules with more than Three Atoms390

10.2.1 The NH3 Molecule390

10.2.2 Formaldehyde and Other H2AB Molecules392

10.2.3 Aromatic Molecules andπ-Electron Systems392

10.3 Rotation of Polyatomic Molecules394

10.3.1 Rotation of Symmetric Top Molecules397

10.3.2 Asymmetric Rotor Molecules399

10.4 Vibrations of Polyatomic Molecules399

10.4.1 Normal Vibrations399

10.4.2 Quantitative Treatment399

10.4.3 Couplings Between Vibrations and Rotations402

10.5 Spectra of Polyatomic Molecules403

10.5.1 Vibrational Transitions within the Same Electronic State404

10.5.2 Rotational Structure of Vibrational Bands406

10.5.3 Electronic Transitions407

10.6 Clusters408

10.6.1 Production of Clusters410

10.6.2 Physical Properties of Clusters410

10.7 Chemical Reactions412

10.7.1 First Order Reactions412

10.7.2 Second Order Reactions413

10.7.3 Exothermic and Endothermic Reactions414

10.7.4 Determination of Absolute Reaction Rates415

10.8 Molecular Dynamics and Wave Packets416

Summary418

Problems420

11.Experimental Techniques in Atomic and Molecular Physics422

11.1 Basic Principles of Spectroscopic Techniques422

11.2 Spectroscopic Instruments423

11.2.1 Spectrometers423

11.2.2 Interferometers429

11.2.3 Detectors433

11.3 Microwave Spectroscopy437

11.4 Infrared Spectroscopy440

11.4.1 Infrared Spectrometers440

11.4.2 Fourier Transform Spectroscopy440

11.5 Laser Spectroscopy444

11.5.1 Laser-Absorption Spectroscopy444

11.5.2 Optoacoustic Spectroscopy445

11.5.3 Optogalvanic Spectroscopy447

11.5.4 Cavity-Ringdown Spectroscopy448

11.5.5 Laser-Induced Fluorescence Spectroscopy450

11.5.6 Ionization Spectroscopy452

11.5.7 Laser Spectroscopy in Molecular Beams453

11.5.8 Nonlinear Laser Spectroscopy455

11.5.9 Saturation Spectroscopy456

11.5.10 Doppler-Free Two-Photon Spectroscopy459

11.6 Raman Spectroscopy460

11.6.1 Basic Principles460

11.6.2 Coherent Anti-Stokes Raman Spectroscopy462

11.7 Spectroscopy with Synchrotron Radiation463

11.8 Electron Spectroscopy465

11.8.1 Experiments on Electron Scattering465

11.8.2 Photoelectron Spectroscopy467

11.8.3 ZEKE Spectroscopy469

11.9 Measurements of Magnetic and Electric Moments in Atoms and Molecules470

11.9.1 The Rabi-Method of Radio-Frequency Spectroscopy471

11.9.2 Stark-Spectroscopy473

11.10 Investigations of Atomic and Molecular Collisions474

11.10.1 Elastic Scattering475

11.10.2 Inelastic Scattering478

11.10.3 Reactive Scattering479

11.11 Time-Resolved Measurements of Atoms and Molecules480

11.11.1 Lifetime Measurements480

11.11.2 Fast Relaxation Processes in Atoms and Molecules484

Summary485

Problems486

12.Modern Developments in Atomic and Molecular Physics487

12.1 Optical Cooling and Trapping of Atoms487

12.1.1 Photon Recoil487

12.1.2 Optical Cooling of Atoms489

12.1.3 Optical Trapping of Atoms491

12.1.4 Bose-Einstein Condensation493

12.1.5 Molecular Spectroscopy in a MOT495

12.2 Time-resolved Spectroscopy in the Femtosecond Range497

12.2.1 Time-resolved Molecular Vibrations497

12.2.2 Femtosecond Transition State Dynamics498

12.2.3 Coherent Control499

12.3 Optical Metrology with New Techniques501

12.3.1 Frequency Comb501

12.3.2 Atomic Clocks with Trapped Ions503

12.4 Squeezing504

12.5 New Trends in Quantum Optics510

12.5.1 Which Way Experiments510

12.5.2 The Einstein-Podolski-Rosen Paradox512

12.5.3 Schr?dinger's Cat513

12.5.4 Entanglement and Quantum Bits513

12.5.5 Quantum Gates515

Summary517

Problems518

Chronological Table for the Development of Atomic and Molecular Physics519

Solutions tothe Exercises523

References571

Subject Index581

热门推荐