图书介绍

概率论入门 英文PDF|Epub|txt|kindle电子书版本网盘下载

概率论入门 英文
  • (美)雷斯尼克(ResnickS.I.)著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:9787510058271
  • 出版时间:2013
  • 标注页数:453页
  • 文件大小:42MB
  • 文件页数:464页
  • 主题词:概率论-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

概率论入门 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Sets and Events1

1.1 Introduction1

1.2 Basic Set Theory2

1.2.1 Indicator functions5

1.3 Limits of Sets6

1.4 Monotone Sequences8

1.5 Set Operations and Closure11

1.5.1 Examples13

1.6 Theσ-field Generated by a Given Class C15

1.7 Borel Sets on the Real Line16

1.8 Comparing Borel Sets18

1.9 Exercises20

2 Probability Spaces29

2.1 Basic Definitions and Properties29

2.2 More on Closure35

2.2.1 Dynkin's theorem36

2.2.2 Proof of Dynkin's theorem38

2.3 Two Constructions40

2.4 Constructions of Probability Spaces42

2.4.1 General Construction of a Probability Model43

2.4.2 Proof of the Second Extension Theorem49

2.5 Measure Constructions57

2.5.1 Lebesgue Measure on(0,1]57

2.5.2 Construction of a Probability Measure on R witl Given Distribution Function F(x)61

2.6 Exercises63

3 Random Variables,Elements,and Measurable Maps71

3.1 Inverse Maps71

3.2 Measurable Maps,Random Elements,Induced Probability Measures74

3.2.1 Composition77

3.2.2 Random Elements of Metric Spaces78

3.2.3 Measurability and Continuity80

3.2.4 Measurability and Limits81

3.3 σ-Fields Generated by Maps83

3.4 Exercises85

4 Independence91

4.1 Basic Definitions91

4.2 Independent Random Variables93

4.3 Two Examples of Independence95

4.3.1 Records,Ranks,Renyi Theorem95

4.3.2 Dyadic Expansions of Uniform Random Numbers98

4.4 More on Independence:Groupings100

4.5 Independence,Zero-One Laws,Borel-Cantelli Lemma102

4.5.1 Borel-Cantelli Lemma102

4.5.2 Borel Zero-One Law103

4.5.3 Kolmogorov Zero-One Law107

4.6 Exercises110

5 Integration and Expectation117

5.1 Preparation for Integration117

5.1.1 Simple Functions117

5.1.2 Measurability and Simple Functions118

5.2 Expectation and Integration119

5.2.1 Expectation of Simple Functions119

5.2.2 Extension of the Definition122

5.2.3 Basic Properties of Expectation123

5.3 Limits and Integrals131

5.4 Indefinite Integrals134

5.5 The Trarnsformation Theorem and Densities135

5.5.1 Expectation is Always an Integral on R137

5.5.2 Densities139

5.6 The Riemann vs Lebesgue Integral139

5.7 Product Spaces143

5.8 Probability Measures on Product Spaces147

5.9 Fubini's theorem149

5.10 Exercises155

6 Convergence Concepts167

6.1 Almost Sure Convergence167

6.2 Convergence in Probability169

6.2.1 Statistical Terminology170

6.3 Connections Between a.s.and i.p.Convergence171

6.4 Quantile Estimation178

6.5 Lp Convergence180

6.5.1 Uniform Integrability182

6.5.2 Interlude:A Review of Inequalities186

6.6 More on Lp Convergence189

6.7 Exercises195

7 Laws of Large Numbers and Sums of Independent Raudom Variables203

7.1 Truncation and Equivalence203

7.2 A General Weak Law of Large Numbers204

7.3 Almost Sure Convergence of Sums of Independent Random Variables209

7.4 Strong Laws of Large Numbers213

7.4.1 Two Examples215

7.5 The Strong Law of Large Numbers for IID Sequences219

7.5.1 Two Applications of the SLLN222

7.6 The Kolmogorov Three Series Theorem226

7.6.1 Necessity of the Kolmogorov Three Series Theorem230

7.7 Exercises234

8 Convergence in Distribution247

8.1 Basic Definitions247

8.2 Scheffé's lemma252

8.2.1 Scheffé's lemma and Order Statistics255

8.3 The Baby Skorohod Theorem258

8.3.1 The Delta Method261

8.4 Weak Convergence Equivalences;Portmanteau Theorem263

8.5 More Relations Among Modes of Convergence267

8.6 New Convergences from Old268

8.6.1 Example:The Central Limit Theorem for m-Dependent Random Variables270

8.7 The Convergence to Types Theorem274

8.7.1 Application of Convergence to Types:Limit Distributions for Extremes278

8.8 Exercises282

9 Characteristic Functions and the Central Limit Theorem293

9.1 Review of Moment Generating Functions and the Central Limit Theorem294

9.2 Characteristic Functions:Definition and First Properties295

9.3 Expansions297

9.3.1 Expansion of eix297

9.4 Moments and Derivatives301

9.5 Two Big Theorems:Uniqueness and Continuity302

9.6 The Selection Theorem,Tightness,and Prohorov's theorem307

9.6.1 The Selection Theorem307

9.6.2 Tightness,Relative Compactness,and Prohorov's theorem309

9.6.3 Proof of the Continuity Theorem311

9.7 The Classical CLT for iid Random Variables312

9.8 The Lindeberg-Feller CLT314

9.9 Exercises321

10 Martingales333

10.1 Prelude to Conditional Expectation:The Radon-Nikodym Theorem333

10.2 Definition of Conditional Expectation339

10.3 Properties of Conditional Expectation344

10.4 Martingales353

10.5 Examples of Martingales356

10.6 Connections between Martingales and Submartingales360

10.6.1 Doob's Decomposition360

10.7 Stopping Tirmes363

10.8 Positive Super Martingales366

10.8.1 Operations on Supermartingales367

10.8.2 Uperossings369

10.8.3 Boundedness Properties369

10.8.4 Convergence of Positive Super Martingales371

10.8.5 Closure374

10.8.6 Stopping Supermartingales377

10.9 Examples379

10.9.1 Gambler's Ruin379

10.9.2 Branching Processes380

10.9.3 Some Differentiation Theory382

10.10 Martingale and Submartingale Convergence386

10.10.1 Krickeberg Decomposition386

10.10.2 Doob's(Sub)martingale Convergence Theorem387

10.11 Regularity and Closure388

10.12 Regularity and Stopping390

10.13 Stopping Theorems392

10.14 Wald's Identity and Random Walks398

10.14.1 The Basic Martingales400

10.14.2 Regular Stopping Times402

10.14.3 Examples of Integrable Stopping Times407

10.14.4 The Simple Random Walk409

10.15 Reversed Martingales412

10.16 Fundamental Theorems of Mathematical Finance416

10.16.1 A Simple Market Model416

10.16.2 Admissible Strategies and Arbitrage419

10.16.3 Arbitrage and Martingales420

10.16.4 Complete Markets425

10.16.5 Option Pricing428

10.17 Exercises429

References443

Index445

热门推荐