图书介绍
分析 第2卷 英文PDF|Epub|txt|kindle电子书版本网盘下载
![分析 第2卷 英文](https://www.shukui.net/cover/3/35086660.jpg)
- (德)阿莫恩著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510047992
- 出版时间:2012
- 标注页数:400页
- 文件大小:60MB
- 文件页数:413页
- 主题词:分析(数学)-英文
PDF下载
下载说明
分析 第2卷 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter Ⅵ Integral calculus in one variable4
1 Jump continuous functions4
Staircase and jump continuous functions4
A characterization of jump continuous functions6
The Banach space of jump continuous functions7
2 Continuous extensions10
The extension of uniformly continuous functions10
Bounded linear operators12
The continuous extension of bounded linear operators15
3 The Cauchy-Riemann Integral17
The integral of staircase functions17
The integral of jump continuous functions19
Riemann sums20
4 Properties of integrals25
Integration of sequences of functions25
The oriented integral26
Positivity and monotony of integrals27
Componentwise integration30
The first fundamental theorem of calculus30
The indefinite integral32
The mean value theorem for integrals33
5 The technique of integration38
Variable substitution38
Integration by parts40
The integrals of rational functions43
6 Sums and integrals50
The Bernoulli numbers50
Recursion formulas52
The Bernoulli polynomials53
The Euler-Maclaurin sum formula54
Power sums56
Asymptotic equivalence57
The Riemann ζ function59
The trapezoid rule64
7 Fourier series67
The L2 scalar product67
Approximating in the quadratic mean69
Orthonormal systems71
Integrating periodic functions72
Fourier coefficients73
Classical Fourier series74
Bessel's inequality77
Complete orthonormal systems79
Piecewise continuously differentiable functions82
Uniform convergence83
8 Improper integrals90
Admissible functions90
Improper integrals90
The integral comparison test for series93
Absolutely convergent integrals94
The majorant criterion95
9 The gamma function98
Euler's integral representation98
The gamma function on C\(-N)99
Gauss's representation formula100
The reflection formula104
The logarithmic convexity of the gamma function105
Stirling's formula108
The Euler beta integral110
Chapter Ⅶ Multivariable differential calculus118
1 Continuous linear maps118
The completeness of L(E,F)118
Finite-dimensional Banach spaces119
Matrix representations122
The exponential map125
Linear difierential equations128
Gronwall's lemma129
The variation of constants formula131
Determinants and eigenvalues133
Fundamental matrices136
Second order linear differential equations140
2 Differentiability149
The definition149
The derivative150
Directional derivatives152
Partial derivatives153
The Jacobi matrix155
A differentiability criterion156
The Riesz representation theorem158
The gradient159
Complex differentiability162
3 Multivariable differentiation rules166
Linearity166
The chain rule166
The product rule169
The mean value theorem169
The differentiability of limits of sequences of functions171
Necessary condition for local extrema171
4 Multilinear maps173
Continuous multilinear maps173
The canonical isomorphism175
Symmetric multilinear maps176
The derivative of multilinear maps177
5 Higher derivatives180
Definitions180
Higher order partial derivatives183
The chain rule185
Taylor's formula185
Functions of m variables186
Sufficient criterion for local extrema188
6 Nemytskii operators and the calculus of variations195
Nemytskii operators195
The continuity of Nemytskii operators195
The differentiability of Nemytskii operators197
The differentiability of parameter-dependent integrals200
Variational problems202
The Euler-Lagrange equation204
Classical mechanics207
7 Inverse maps212
The derivative of the inverse of linear maps212
The inverse function theorem214
Diffeomorphisms217
The solvability of nonlinear systems of equations218
8 Implicit functions221
Differentiable maps on product spaces221
The implicit function theorem223
Regular values226
Ordinary differential equations226
Separation of variables229
Lipschitz continuity and uniqueness233
The Picard-Lindel?f theorem235
9 Manifolds242
Submanifolds of Rn242
Graphs243
The regular value theorem243
The immersion theorem244
Embeddings247
Local charts and parametrizations252
Change of charts255
10 Tangents and normals260
The tangential in Rn260
The tangential space261
Characterization of the tangential space265
Differentiable maps266
The differential and the gradient269
Normals271
Constrained extrema272
Applications of Lagrange multipliers273
Chapter Ⅷ Line integrals281
1 Curves and their lengths281
The total variation281
Rectifiable paths282
Differentiable curves284
Rectifiable curves286
2 Curves in Rn292
Unit tangent vectors292
Parametrization by arc length293
Oriented bases294
The Frenet n-frame295
Curvature of plane curves298
Identifying lines and circles300
Instantaneous circles along curves300
The vector product302
The curvature and torsion of space curves303
3 Pfaff forms308
Vector fields and Pfaff forms308
The canonical basis310
Exact forms and gradient fields312
The Poincaré lemma314
Dual operators316
Transformation rules317
Modules321
4 Line integrals326
The definition326
Elementary properties328
The fundamental theorem of line integrals330
Simply connected sets332
The homotopy invariance of line integrals333
5 Holomorphic functions339
Complex line integrals339
Holomorphism342
The Cauchy integral theorem343
The orientation of circles344
The Cauchy integral formula345
Analytic functions346
Liouville's theorem348
The Fresnel integral349
The maximum principle350
Harmonic functions351
Goursat's theorem353
The Weierstrass convergence theorem356
6 Meromorphic functions360
The Laurent expansion360
Removable singularities364
Isolated singularities365
Simple poles368
The winding number370
The continuity of the winding number374
The generalized Cauchy integral theorem376
The residue theorem378
Fourier integrals379
References387
Index389