图书介绍

分析 1 影印版 英文PDF|Epub|txt|kindle电子书版本网盘下载

分析 1 影印版 英文
  • (法)戈德门特(GodementR.)著 著
  • 出版社: 北京:高等教育出版社
  • ISBN:9787040279559
  • 出版时间:2009
  • 标注页数:430页
  • 文件大小:193MB
  • 文件页数:452页
  • 主题词:分析(数学)-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

分析 1 影印版 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ-Sets and Functions1

1.Set Theory7

1-Membership,equality,empty set7

2-The set defined by a relation.Intersections and unions10

3-Whole numbers.Infinite sets13

4-Ordered pairs,Cartesian products,sets of subsets17

5-Functions,maps,correspondences19

6-Injections,surjections,bijections23

7-Equipotent sets.Countable sets25

8-The different types of infinity28

9-Ordinals and cardinals31

2.The logic of logicians39

Ⅱ-Convergence:Discrete variables45

1.Convergent sequences and series45

0-Introduction: what is a real number?45

1-Algebraic operations and the order relation:axioms of R53

2-Inequalities and intervals56

3-Local or asymptotic properties59

4-The concept of limit.Continuity and differentiability63

5-Convergent sequences:definition and examples67

6-The language of series76

7-The marvels of the harmonic series81

8-Algebraic operations on limits95

2.Absolutely convergent series98

9-Increasing sequences. Upper bound of a set of real numbers98

10-The function logx. Roots of a positive number103

11-What is an integral?110

12-Series with positive terms114

13-Alternating series119

14-Classical absolutely convergent series123

15-Unconditional convergence:general case127

16-Comparison relations.Criteria of Cauchy and d'Alembert132

17-Infinite limits138

18-Unconditional convergence:associativity139

3.First concepts of analytic functions148

19-The Taylor series148

20-The principle of analytic continuation158

21-The function cot x and the series Σ1/n2k162

22-Multiplication of series.Composition of analytic func-tions.Formal series167

23-The elliptic functions of Weierstrass178

Ⅲ-Convergence:Continuous variables187

1.The intermediate value theorem187

1-Limit values of a function.Open and closed sets187

2-Continuous functions192

3-Right and left limits of a monotone function197

4-The intermediate value theorem200

2.Uniform convergence205

5-Limits of continuous functions205

6-A slip up of Cauchy's211

7-The uniform metric216

8-Series of continuous functions.Normal convergence220

3.Bolzano-Weierstrass and Cauchy's criterion225

9-Nested intervals,Bolzano-Weierstrass,compact sets225

10-Cauchy's general convergence criterion228

11-Cauchy's criterion for series:examples234

12-Limits of limits239

13-Passing to the limit in a series of functions241

4.Differentiable functions244

14-Derivatives of a function244

15-Rules for calculating derivatives252

16-The mean value theorem260

17-Sequences and series of differentiable functions265

18-Extensions to unconditional convergence270

5.Differentiable functions of several variables273

19-Partial derivatives and differentials273

20-Differentiability of functions of class C1276

21-Diferentiation of composite functions279

22-Limits of differentiable functions284

23-Interchanging the order of differentiation287

24-Implicit functions290

Appendix to Chapter Ⅲ303

1-Cartesian spaces and general metric spaces303

2-Open and closed sets306

3-Limits and Cauchy's criterion in a metric space;complete spaces308

4-Continuous functions311

5-Absolutely convergent series in a Banach space313

6-Continuous linear maps316

7-Compact spaces320

8-Topological spaces322

Ⅳ-Powers,Exponentials,Logarithms,Trigonometric Functions325

1.Direct construction325

1-Rational exponents325

2-Definition of real powers327

3-The calculus of real exponents330

4-Logarithms to base a.Power functions332

5-Asymptotic behaviour333

6-Characterisations of the exponential,power and logarithmic functions336

7-Derivatives of the exponential functions:direct method339

8-Derivatives of exponential functions,powers and logarithms342

2.Series expansions345

9-The number e.Napierian logarithms345

10-Exponential and logarithmic series:direct method346

11-Newton's binomial series351

12-The power series for the logarithm359

13-The exponential function as a limit368

14-Imaginary exponentials and trigonometric functions372

15-Euler's relation chez Euler383

16-Hyperbolic functions388

3.Infinite products394

17-Absolutely convergent infinite products394

18-The infinite product for the sine function397

19-Expansion of an infinite product in series403

20-Strange identities407

4.The topology of the functions Arg(z)and Log z414

Index425

热门推荐