图书介绍
机器学习的煤与瓦斯突出前兆识别方法研究PDF|Epub|txt|kindle电子书版本网盘下载
![机器学习的煤与瓦斯突出前兆识别方法研究](https://www.shukui.net/cover/75/34550287.jpg)
- 闫秋艳著 著
- 出版社: 徐州:中国矿业大学出版社
- ISBN:9787564636777
- 出版时间:2017
- 标注页数:183页
- 文件大小:15MB
- 文件页数:192页
- 主题词:煤突出-防治;瓦斯突出-防治
PDF下载
下载说明
机器学习的煤与瓦斯突出前兆识别方法研究PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 绪论1
1.1 引言1
1.2 我国煤与瓦斯突出的概况2
1.3 煤与瓦斯突出的分类3
1.4 煤与瓦斯突出危险性预测的必要性及分类5
1.5 工作面煤与瓦斯突出预测的研究现状6
1.6 小结12
第2章 突出监测数据的建模及分段模式表示13
2.1 引言13
2.2 突出监测数据的流数据特性分析14
2.3 流数据挖掘研究现状15
2.4 时间序列模式表示方法研究现状21
2.5 基于拟合点的分段线性拟合方法27
2.6 复杂度分析36
2.7 实验及结果分析36
2.8 小结46
第3章 非突变型干扰模式检测方法48
3.1 引言48
3.2 流数据异常检测方法概述49
3.3 基于概率相似距离的模式异常检测算法54
3.4 复杂度分析64
3.5 实验及结果分析65
3.6 小结76
第4章 突变型干扰模式检测方法77
4.1 绪论77
4.2 Discord的定义及其在突出电磁数据应用中存在的问题78
4.3 不确定Top-k查询的研究现状80
4.4 分值连续分布的Top-k查询算法(MCTop-k)88
4.5 不确定连续时间序列的Discord查询算法102
4.6 小结111
第5章 突出前兆趋势的模式识别方法113
5.1 引言113
5.2 相关知识114
5.3 基于趋势分析的灾害异常检测算法119
5.4 实验及结果分析132
5.5 小结140
第6章 不均衡突出数据的分类方法研究142
6.1 概述142
6.2 不均衡数据学习概述143
6.3 不均衡数据学习方法概述145
6.4 基于shapelets特征空间的不均衡时间序列分类方法147
6.5 实验结果及分析158
6.6 小结167
参考文献168