图书介绍
连续介质力学初级教程 第3版PDF|Epub|txt|kindle电子书版本网盘下载
![连续介质力学初级教程 第3版](https://www.shukui.net/cover/55/34439820.jpg)
- 冯元桢著 著
- 出版社: 北京:清华大学出版社
- ISBN:7302121389
- 出版时间:2005
- 标注页数:311页
- 文件大小:45MB
- 文件页数:331页
- 主题词:连续介质力学-高等学校-教材-英文
PDF下载
下载说明
连续介质力学初级教程 第3版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 The objective of this course1
1.2 Applications to science and technology2
1.3 What is mechanics?2
1.4 A prototype of a continuum:The classical definition2
1.5 Our definition of a continuum3
1.6 The concept of stress in our definition of a continuum4
1.7 Abstract copy of a real continuum5
1.8 What is continuum mechanics about?6
1.9 Axioms of continuum mechanics7
1.10 A biological example of a hierarchy of continua depending on the size of the object involved in a scientific inquiry7
1.11 Elementary topic through which basic ideas evolved12
2 Vectors and Tensors39
2.1 Vectors39
2.2 Vector equations41
2.3 The summation convention44
2.4 Translation and rotation of coordinates49
2.5 Coordinate transformation in general53
2.6 Analytical definitions of scalars,vectors,and Cartesian tensors55
2.7 The significance of tensor equations58
2.8 Notations for vectors and tensors:Boldface or indices?58
2.9 Quotient rule59
2.10 Partial derivatives60
3 Stress64
3.1 The idea of stress64
3.2 The laws of motion66
3.3 Cauchy's formula69
3.4 Equations of equilibrium72
3.5 Change of stress components in transformation of coordinates75
3.6 Stress components in orthogonal curvilinear coordinates76
3.7 Stress boundary conditions78
4 Principal Stresses and Principal Axes88
4.1 Introduction88
4.2 Plane state of stress89
4.3 Mohr's circle for plane stress92
4.4 Mohr's circles for three-dimensional stress states94
4.5 Principal stresses94
4.6 Shearing stresses97
4.7 Stress-deviation tensor99
4.8 Lamé's stress ellipsoid102
5 Analysis of Deformation112
5.1 Deformation112
5.2 The strain115
5.3 Strain components in terms of displacements117
5.4 Geometric interpretation of infinitesimal strain components119
5.5 Infinitesimal rotation121
5.6 Finite strain components122
5.7 Principal strains:Mohr's circle124
5.8 Infinitesimal strain components in polar coordinates125
5.9 Direct derivation of the strain-displacement relations in polar coordinates128
5.10 Other strain measures131
6 Velocity Fields and Compatibility Conditions145
6.1 Velocity fields145
6.2 The compatibility condition146
6.3 Compatibility of strain components in three dimensions148
7 Constitutive Equations154
7.1 Specification of the properties of materials154
7.2 The nonviscous fluid155
7.3 Newtonian fluid156
7.4 Hookean elastic solid157
7.5 Effect of temperature161
7.6 Materials with more complex mechanical behavior161
8 Isotropy165
8.1 The concept of material isotropy165
8.2 Isotropic tensor165
8.3 Isotropic tensors of rank 3169
8.4 Isotropic tensors of rank 4170
8.5 Isotropic materials172
8.6 Coincidence of principal axes of stress and of strain172
8.7 Other methods of characterizing isotropy173
8.8 Can we recognize a material's isotropy from the microstructure?173
9 Mechanical Properties of Real Fluids and Solids181
9.1 Fluids181
9.2 Viscosity183
9.3 Plasticity of metals186
9.4 Materials with nonlinear elasticity188
9.5 Nonlinear stress-strain relationships of rubber and biological tissues191
9.6 Linear viscoelastic bodies193
9.7 Quasi-1inear viscoelasticity of biological tissues197
9.8 Non-Newtonian fluids201
9.9 Viscoplastic materials202
9.10 Sol-gel transformation and thixotropy204
10 Derivation of Field Equations209
10.1 Gauss's theorem209
10.2 Material description of the motion of a continuum212
10.3 Spatial description of the motion of a continuum214
10.4 The material derivative of a volume integral215
10.5 The equation of continuity217
10.6 The equations of motion218
10.7 Moment of momentum219
10.8 The balance of energy220
10.9 The equations of motion and continuity in polar coordinates223
11 Field Equations and Boundary Conditions in Fluid Mechanics231
11.1 The Navier-Stokes equations231
11.2 Boundary conditions at a solid-fluid interface233
11.3 Surface tension and the boundary conditions at an interface between two fluids235
11.4 Dynamic similarity and Reynolds number238
11.5 Laminar flow in a horizontal channel or tube240
11.6 Boundary layer244
11.7 Laminar boundary layer over a flat plate247
11.8 Nonviscous fluid249
11.9 Vorticity and circulation251
11.10 Irrotational flow253
11.11 Compressible nonviscous fluids254
11.12 Subsonic and supersonic flow257
11.13 Applications to biology265
12 Some Simple Problems in Elasticity270
12.1 Basic equations of elasticity for homogeneous.isotropic bodies270
12.2 Plane elastic waves272
12.3 Simplifications274
12.4 Torsion of a circular cylindrical shaft274
12.5 Beams278
12.6 Biomechanics281
13 Stress,Strain,and Active Remodeling of Structures285
13.1 Introduction285
13.2 How to discover the zero-stress state of materialin a solid body285
13.3 Remodeling the zero-stress state of a structure:A biological example of active remodeling due to change in stress288
13.4 Change of zero-stress state with temperature:Materials that“remember"their shapes290
13.5 Morphological and structural remodeling of blood vessel due to a change in blood pressure292
13.6 Remodeling of mechanical properties294
13.7 Stress analysis with the zero-stress state taken into account296
13.8 Stress-growth relationship299
Index302