图书介绍
模形式与费马大定理 影印本 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (美)康奈尔(Cornell G.)著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:7510070174
- 出版时间:2014
- 标注页数:582页
- 文件大小:83MB
- 文件页数:602页
- 主题词:
PDF下载
下载说明
模形式与费马大定理 影印本 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER Ⅰ An Overview of the Proof of Fermat's Last Theorem&GLENN STEVENS1
1.A remarkable elliptic curve2
2.Galois representations3
3.A remarkable Galois representation7
4.Modular Galois representations7
5.The Modularity Conjecture and Wiles's Theorem9
6.The proof of Fermat's Last Theorem10
7.The proof of Wiles's Theorem10
References15
CHAPTER Ⅱ A Survey of the Arithmetic Theory of Elliptic Curves&JOSEPH H.SILVERMAN17
1.Basic definitions17
2.The group law18
3.Singular cubics18
4.Isogenies19
5.The endomorphism ring19
6.Torsion points20
7.Galois representations attached to E20
8.The Weil pairing21
9.Elliptic curves over finite fields22
10.Elliptic curves over C and elliptic functions24
11.The formal group of an elliptic curve26
12.Elliptic curves over local fields27
13.The Selmer and Shafarevich-Tate groups29
14.Discriminants,conductors,and L-series31
15.Duality theory33
16.Rational torsion and the image of Galois34
17.Tate curves34
18.Heights and descent35
19.The conjecture of Birch and Swinnerton-Dyer37
20.Complex multiplication37
21.Integral points39
References40
CHAPTER Ⅲ Modular Curves,Hecke Correspondences,and L-Functions&DAVID E.ROHRLICH41
1.Modular curves41
2.The Heckc correspondences61
3.L-functions73
References99
CHAPTER Ⅳ Galois Cohomology&LAWRENCE C.WASHINGTON101
1.H0,H1,and H2101
2.Preliminary results105
3.Local Tate duality107
4.Extensions and deformations108
5.Generalized Selmer groups111
6.Local conditions113
7.Conditions at p114
8.Proof of theorem 2117
References120
CHAPTER Ⅴ Finitc Flat Group Schemes&JOHN TATE121
Introduction121
1.Group objects in a category122
2.Group schemes.Examples125
3.Finite flat group schemes:passage to quotient132
4.Raynaud's results on commutative p-group schemes146
References154
CHAPTER Ⅵ Three Lectures on the Modularity of ?E,3 and the Langlands Reciprocity Conjecture&STEPHEN GELBART155
Lccture Ⅰ.The modularity of ?E,3 and automorphic representations of weight one156
1.The modularity of ?E,3157
2.Automorphic representations of weight one164
Lecture Ⅱ.The Langlands program:Some results and methods176
3.The local Langlands correspondence for GL(2)176
4.The Langlands reciprocity conjecture(LRC)179
5.The Langlands functoriality principle theory and results182
Lecture Ⅲ.Proof of the Langlands-Tunnell theorem192
6.Base change theory192
7.Application to Artin's conjecture197
References204
CHAPTER Ⅶ Serre's Conjectures&BAS EDIXHOVEN209
1.Serre's conjecture:statement and results209
2.The cases we need222
3.Weight two,trivial character and square free level224
4.Dealing with the Langlands-Tunnell form230
References239
CHAPTER Ⅷ An Introduction to the Deformation Theory of Galois Representations&BARRY MAZUR243
Chapter Ⅰ.Galois representations246
Chapter Ⅱ.Group representations251
Chapter Ⅲ.The deformation theory for Galois representations259
Chapter Ⅳ.Functors and representability267
Chapter Ⅴ.Zariski tangent spaces and deformation problems subject to“conditions”284
Chapter Ⅵ.Back to Galois representations294
References309
CHAPTER Ⅸ Explicit Construction of Universal Deformation Rings&BART DE SMIT AND HENDRIK W.LENSTRA,JR.313
1.Introduction313
2.Main results314
3.Lifting homomorphisms to matrix groups317
4.The condition of absolute irreducibility318
5.Projective limits320
6.Restrictions on deformations323
7.Relaxing the absolute irreducibility condition324
References326
CHAPTER Ⅹ Hecke Algebras and the Gorenstein Property&JACQUES TILOUINE327
1.The Gorenstein property328
2.Hecke algebras330
3.The main theorem331
4.Strategy of the proof of theorem 3.4334
5.Sketch of the proof335
Appendix340
References341
CHAPTER Ⅺ Criteria for Complete Intersections&BART DE SMIT,KARL RUBIN,AND REN? SCHOOF343
Introduction343
1.Preliminaries345
2.Complete intersections347
3.Proof of Criterion Ⅰ350
4.Proof of Criterion Ⅱ353
Bibliography355
CHAPTER Ⅻ e-adic Modular Deformations and Wiles's“Main Conjecture'”&FRED DIAMOND AND KENNETH A.RIBET357
1.Introduction357
2.Strategy358
3.The“Main Conjecture”359
4.Reduction to the case ∑=θ363
5.Epilogue370
Bibliography370
CHAPTER ⅩⅢ The Flat Deformation Functor&BRIAN CONRAD373
Introduction373
0.Notation374
1.Motivation and flat representations375
2.Defining the functor394
3.Local Galois cohomology and deformation theory397
4.Fontaine's approach to finite flat group schemes406
5.Applications to flat deformations412
References418
CHAPTER ⅩⅥ Hecke Rings and Universal Deformation Rings&EHUD DE SHALIT421
1.Introduction421
2.An outline of the proof424
3.Proof of proposition 10-On the structure of the Hecke algebra432
4.Proof of proposition 11-On the structure of the universal deformation ring436
5.Conclusion of the proof:Some group theory442
Bibliography444
CHAPTER ⅩⅤ Explicit Families of Elliptic Curves with Prescribed Mod N Representations&ALICE SILVERBERG447
Introduction447
Part 1.Elliptic curves with the same mod N representation448
1.Modular curves and elliptic modular surfaces of level N448
2.Twists of YN and WN449
3.Model for W when N=3,4,or 5450
4.Level 4451
Part 2.Explicit families of modular elliptic curves454
5.Modular j invariants454
6.Semistable reduction455
7.Mod 4 representations456
8.Torsion subgroups457
References461
CHAPTER ⅩⅥ Modularity of Mod 5 Representations&KARL RUBIN463
Introduction463
1.Preliminaries:Group theory465
2.Preliminaries:Modular curves466
3.Proof of the irreducibility theorem(Theorem 1)470
4.Proofofthe modularity theorem(Theorem 2)470
5.Mod 5 representations and elliptic curves471
References473
CHAPTER ⅩⅦ An Extension of Wiles' Results&FRED DIAMOND475
1.Introduction475
2.Local representations mod e476
3.Minimally ramified liftings480
4.Universal deformation rings481
5.Hecke algebras482
6.The main results483
7.Sketch of proof484
References488
APPENDIX TO CHAPTER ⅩⅦ Classification of ?E,e by the j Invariant of E&FRED DIAMOND AND KENNETH KRAMER491
CHAPTER ⅩⅧ Class Field Theory and the First Case of Fermat's Last Theorem&HENDRIK W.LENSTRA,JR.AND PETER STEVENHAGEN499
CHAPTER ⅩⅨ Remarks on the History of Fermat's Last Theorem 1844 to 1984&MICHAEL ROSEN505
Introduction507
1.Fermat's last theorem for polynomials507
2.Kummer's work on cyclotomic fields508
3.Fermat's last theorem for regular primes and certain other cases513
4.The structure of the p-class group517
5.Suggested readings521
Appendix A:Kummer congruence and Hilbert's theorem 94522
Bibliography524
CHAPTER ⅩⅩ On Ternary Equations of Fermat Type and Relations with Elliptic Curves&GERHARD FREY527
1.Conjectures527
2.The generic case540
3.K=Q542
References548
CHAPTER ⅩⅪ Wiles'Theorem and the Arithmetic of Elliptic Curves&HENRI DARMON549
1.Prelude:plane conics,Fermat and Gauss549
2.Elliptic curves and Wiles' theorem552
3.The special values of L(E/Q,s)at s=1557
4.The Birch and Swinnerton-Dyer conjecture563
References566
Index573