图书介绍
概率统计 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![概率统计 英文版](https://www.shukui.net/cover/75/34309279.jpg)
- (美)stone,C.J.著 著
- 出版社: 北京:机械工业出版社
- ISBN:7111123204
- 出版时间:2003
- 标注页数:838页
- 文件大小:28MB
- 文件页数:849页
- 主题词:概率论-高等学校-教材-英文;数理统计-高等学校-教材-英文
PDF下载
下载说明
概率统计 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Random Variables and Their Distributions1
1.1 Introduction1
1.2 Sample Distributions5
1.3 Distributions14
1.4 Random Variables23
1.5 Probability Functions and Density Functions33
1.6 Distribution Functions and Quantiles45
1.7 Univariate Transformations60
1.8 Independence69
CHAPTER 2 Expectation81
2.1 Introduction81
2.2 Properties of Expectation91
2.3 Variance99
2.4 Weak Law of Large Numbers110
2.5 Simulation and the Monte Carlo Method121
CHAPTER 3 Special Continuous Models134
3.1 Gamma and Beta Distributions134
3.2 The Normal Distribution145
3.3 Normal Approximation and the Central Limit Theorem156
CHAPTER 4 Special Discrete Models162
4.1 Combinatorics162
4.2 The Binomial Distribution172
4.3 The Multinomial Distribution188
4.4 The Poisson Distribution195
4.5 The Poisson Process204
CHAPTER 5 Dependence209
5.1 Covariance,Linear Prediction,and Correlation209
5.2 Multivariate Expectation219
5.3 Covariance and Variance-Covariance Matrices225
5.4 Multiple Linear Prediction236
5.5 Multivariate Density Functions242
5.6 Invertible Transformations252
5.7 The Multivariate Normal Distribution263
CHAPTER 6 Conditioning274
6.1 Conditional Distributions274
6.2 Sampling Without Replacement285
6.3 Hypergeometric Distribution292
6.4 Conditional Density Functions300
6.5 Conditional Expectation307
6.6 Prediction316
6.7 Conditioning and the Multivariate Normal Distribution322
6.8 Random Parameters330
CHAPTER 7 Normal Models338
7.1 Introduction338
7.2 Chi-Square,t,and F Distributions344
7.3 Confidence Intervals353
7.4 The t Test of an Inequality365
7.5 The t Test of an Equality375
7.6 The F Test388
8.1 The Method of Least Squares396
CHAPTER 8 Introduction to Linear Regression396
8.2 Factorial Experiments407
8.3 Input-Response and Experimental Models415
CHAPTER 9 Linear Analysis427
9.1 Linear Spaces427
9.2 Identifiability438
9.3 Saturated Spaces447
9.4 Inner Products454
9.5 Orthogonal Projections470
9.6 Normal Equations485
10.1 Least-Squares Estimation494
CHAPTER 10 Linear Regression494
10.2 Sums of Squares506
10.3 Distribution Theory515
10.4 Sugar Beet Experiment526
10.5 Lube Oil Experiment538
10.6 The t Test552
10.7 Submodels560
10.8 The F Test568
CHAPTER 11 Orthogonal Arrays579
11.1 Main Effects579
11.2 Interactions595
11.3 Experiments with Factors Having Three Levels611
11.4 Randomization,Blocking,and Covariates620
CHAPTER 12 Binomial and Poisson Models635
12.1 Nominal Confidence Intervals and Tests636
12.2 Exact P-Values651
12.3 One-Parameter Exponential Families662
CHAPTER 13 Logistic Regression and Poisson Regression673
13.1 Input-Response and Experimental Models675
13.2 Maximum-Likelihood Estimation686
13.3 Existence and Uniqueness of the Maximum-Likelihood Estimate699
13.4 Iteratively Reweighted Least-Squares Method709
13.5 Normal Approximation723
13.6 The Likelihood-Ratio Test736
APPENDIX A Properties of Vectors and Matrices751
APPENDIX B Summary of Probability760
B.1 Random Variables and Their Distributions760
B.2 Random Vectors769
APPENDIX C Summary of Statistics774
C.1 Normal Models774
C.2 Linear Regression779
C.3 Binomial and Poisson Models785
C.4 Logistic Regression and Poisson Regression787
APPENDIX D Hints and Answers798
APPENDIX E Tables828
Index833