图书介绍
仿真建模与分析 第3版 英文PDF|Epub|txt|kindle电子书版本网盘下载
![仿真建模与分析 第3版 英文](https://www.shukui.net/cover/71/34290414.jpg)
- (美)劳(Law,A.M.)等著 著
- 出版社: 北京:清华大学出版社
- ISBN:7302041326
- 出版时间:2000
- 标注页数:760页
- 文件大小:33MB
- 文件页数:784页
- 主题词:离散系统-建立模型-高等学校-教材-英文 离散系统-仿真-高等学校-教材-英文
PDF下载
下载说明
仿真建模与分析 第3版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter1 Basic Simulation Modeling1
1.1 The Nature of Simulation1
1.2 Systems,Models,and Simulation3
1.3 Discrete-Event Simulation6
1.3.1 Time-Advance Mechanisms7
1.3.2 Components and Organization of a Discrete-event Simulation Model9
1.4 Simulation of a Single-Server Queueing System12
1.4.1 Problem Statement12
List of Symbols17
1.4.2 Intuitive Explanation18
Preface19
1.4.3 Program Organization and Logic27
1.4.4 FORTRAN Program32
1.4.5 C Program41
1.4.6 Simulation Output and Discussion49
1.4.7 Alternative Stopping Rules51
1.4.8 Determining the Events and Variables57
1.5.1 Problem Statement60
1.5 Simulation of and Inventory System60
1.5.2 Program Organization and Logic62
1.5.3 FORTRAN Program66
1.5.4 C Program73
1.5.5 Simulation Output and Discussion78
1.6 Alternative Approaches to Modeling and Coding Simulations80
1.6.1 Parallel and Distributed Simulation80
1.6.2 Simulation across the Internet and Web-Based Simulation83
1.7 Steps in a Sound Simulation Study83
1.8 Other Types of Simulation87
1.8.1 Continuous Simulation87
1.8.2 Combined Discrete-Continuous Simulation89
1.8.3 monte Carlo Simulation90
1.9 Advantages,Disadvantages,and Pitfalls of Simulation91
Appendix 1A:Fixed-Increment Time Advance93
Appendix 1B:A Primer on Queueing Systems94
1B.2 Notation for Queueing Systems95
1B.1 Components of a Queueing System95
1B.3 Measures of Performance for Queueing Systems96
Problems99
Chapter2 Modeling Complex Systems106
2.1 Introduction106
2.2 List Processing in Simulation107
2.2.1 Approaches to Storing Lists in a Computer107
2.2.2 Linked Storage Allocation108
2.3 A Simple Simulation Language:simlib114
2.4.2 simlib Program123
2.4 Single-Server Queueing Simulation with simlib123
2.4.1 Problem Statement123
2.4.3 Simulation Output and Discussion128
2.5 Time-Shared Computer Model129
2.5.1 Problem Statement129
2.5.2 simlib Program130
2.5.3 Simulation Output and Discussion138
2.6.1 Problem Statement141
2.6 Multiteller Bank with Jockeying141
2.6.2 simlib Program142
2.6.3 Simulation Output and Discussion152
2.7 Job-Shop Model155
2.7.1 Problem Statement155
2.7.2 simlib Program157
2.7.3 Simulation Output and Discussion168
2.8 Efficient Event-List Manipulation170
Appendix2A: C Code for simlib171
Problems184
Chapter3 Simulation Software202
3.1 Introduction202
3.2 Comparison of Simulation Packages with Programming Languages203
3.3 Classification of Simulation Software204
3.3.1 General-Purpose Versus Application-oriented Simulation Packages204
3.3.2 Modeling Approaches205
3.3.3 Common Modeling Elements207
3.4.1 General Capabilities208
3.4 Desirable Software Features208
3.4.2 Hardware and Software Requirements210
3.4.3 Animation and Dynamic Graphics210
3.4.4 Statistical Capabilities212
3.4.5 Customer Support and Documentation213
3.4.6 Output Reports and Craphics214
3.5 General-Purpose Simulation Packages215
3.5.1 Arena215
3.5.2 Extend219
3.5.3 Other General-Purpose Simulation Packages225
3.6 Object-Oriented Simulation227
3.6.1 MODSIM III228
3.7 Examples of Application-Oriented Simulation Packages233
Chapter4 Review of Basic Probability and Statistics235
4.1 Introduction235
4.2 Random Variables and Their Properties235
4.3 Simulation Output Data and Stochastic Processes247
4.4 Estimation of Means,Variances,and Correlations249
4.5 Confidence Intervals and Hypothesis Tests for the Mean253
4.6 The Strong Law of Large Numbers259
4.7 The Danger of Replacing a Probability Distribution by its Mean260
Appendix4A:Comments on Covariance-Stationary Processes260
Problems261
Chapter5 Building Valid,Credible,and Appropriately Detailed Simulation Models264
5.1 Introduction and Definitions264
5.2 Guidelines for Determining the Level of Model Detail267
5.3 Verification of Simulation Computer Programs269
5.4 Techniques for Increasing Model Validity and Credibility273
5.4.1 Collect High-Quality Information and Data on the System274
5.4.2 Interact with the Manager on a Regular Basis275
5.4.3 Maintain and Assumptions Document and Perform a Structured Walk-Through276
5.4.4 Validate Components of the Model by Using Quantitative Techniques277
5.4.5 Validate the Output from the Overall Simulation Model279
5.4.6 Animation282
5.5 Management s Role in the Simulation Process282
5.6.1 Inspection Approach283
5.6 Statistical Procedures for Comparing Real-World Observations and Simulation Output Data283
5.6.2 Confidence-Interval Approach Based on Independent Data287
5.6.3 Time-Series Approaches289
Problems290
Chapter6 Selecting Input Probability Distributions292
6.1 Introduction292
6.2 Useful Probability Distributions298
6.2.1 Parameterization of Continuous Distributions298
6.2.2 Continuous Distributions299
6.2.3 Discrete Distributions318
6.2.4 Empirical Distributions318
6.3 Techniques for Assessing Sample Independence329
6.4 Activity Ⅰ:Hypothesizing Families of Distributions332
6.4.1 Summary Statistics333
6.4.2 Histograms335
6.4.3 Quantile Summaries and Box Plots337
6.5 ActivityⅡ:Estimation of Parameters343
6.6.1 Heuristic Procedures347
6.6 ActivityⅢ:Determining How Representative the Fitted Distributions Are347
6.6.2 Goodness-of-Fit Tests356
6.7 The ExpertFit Software and an Extended Example370
6.8 Shifted and Truncated Distributions376
6.9 Bezier Distributions378
6.10 Specifying Multivariate Distributions,Correlations,and Stochastic Processes378
6.10.1 Specifying Multivariate Distributions380
6.10.2 Specifying Arbitrary Marginal Distributions and Correlations383
6.10.3 Specifying Stochastic Processes384
6.11 Selecting a Distribution in the Absence of Data386
6.12 Models of Arrival Processes389
6.12.1 Poisson Processes389
6.12.2 Nonstationary Poisson Processes390
6.12.3 Batch Arrivals393
6.13 Assessing the Homogeneity of Different Data Sets394
Appendix 6A:Tables of MLEs for the Gamma and Beta Distributions395
Problems397
Chapter7 Random-Number Generators402
7.1 Introduction402
7.2 Linear Congruential Generators406
7.2.1 Mixed Generators409
7.2.2 Multiplicative Generators410
7.3 Other Kinds of Generators412
7.3.1 More General Congruences413
7.3.2 Composite Generators414
7.3.3 Tausworthe and Related Generators416
7.4 Testing Random-Number Generators417
7.4.1 Empirical Tests418
7.4.2 Theoretical Tests423
7.4.3 Some General Observations on Testing426
Appendix7A:Portable Computer Codes for a PMMLCG427
7A.1 FORTRAN428
7A.2 C430
7A.3 Obtaining Initial Seeds for the Streams431
Appendix 7B:Portable C Code for a Combined MRG432
Problems435
8.1 Introduction437
Chapter8 Generating Random Variates437
8.2 General Approaches to Generating Random Variates439
8.2.1 Inverse Transform440
8.2.2 Composition448
8.2.3 Convolution451
8.2.4 Acceptance-Rejection452
8.2.5 Special Properties459
8.3 Generating Continuous Random Variates459
8.3.1 Uniform460
8.3.2 Exponential460
8.3.3 m-Erlang461
8.3.4 Gamma461
8.3.5 Weibull464
8.3.6 Normal465
8.3.7 Lognormal466
8.3.8 Beta467
8.3.12 Johnson Bounded468
8.3.11 Log-Logistic468
8.3.9 Pearson Type V468
8.3.10 Pearson Type VI468
8.3.13 Johnson Unbounded469
8.3.14 Bezier469
8.3.15 Triangular469
8.3.16 Empirical Distributions470
8.4 Generating Discrete Random Variates471
8.4.2 Discrete Uniform472
8.4.3 Arbitrary Discrete Distribution472
8.4.1 Bernoulli472
8.4.4 Binonial477
8.4.5 Geometric477
8.4.6 Negative Binomial477
8.4.7 Poisson478
8.5 Generating Random Vectors,Correlated Random Variates,and Stochastic Processes478
8.5.1 Using Conditional Distributions479
8.5.2 Multivariate Normal and Multivariate Lognormal480
8.5.3 Correlated Gamma Random Variates481
8.5.5 Generating Random Vectors with Arbitrarily Specified Marginal Distributions and Correlations482
8.5.4 Generating from Multivariate Families482
8.5.6 Generating Stochastic Processes483
8.6 Generating Arrival Processes484
8.6.1 Poisson Processes485
8.6.2 Nonstationary Poisson Processes485
8.6.3 Batch Arrivals489
Appendix8A:Validity of the Acceptance-Rejection Method489
Appendix8B:Setup for the Alias Method490
Problems491
9.1 Introduction496
Chapter9 Output Data Analysis for a Single System496
9.2 Transient and Steady-State Behavior of a Stochastic Process499
9.3 Types of Simulations with Regard to Output Analysis502
9.4 Statistical Analysis for Terminating Simulations505
9.4.1 Estimating Means506
9.4.2 Estimating Other Measures of Performance515
9.4.3 Choosing Initial Conditions518
9.5 Statistical Analysis for Steady-State Parameters518
9.5.1 The Problem of the Initial Transient519
9.5.2 Replicfation/Daletion Approaches for Means525
9.5.3 Other Approaches for Means527
9.5.4 Estimating Other Measures of Performance537
9.6 Statistical Analysis for Steady-State Cycle Parameters539
9.7 Multiple Measures of Performance542
9.8 Time Plots of Important Variables545
Appendix9A:Ratios of Expectations and Jackknife Estimators545
Problems547
10.1 Introduction553
Chapter10 Comparing Alternative System Configurations553
10.2 Confidence Intervals for the Difference Between the Expected Responses of Two Systems557
10.2.1 A Paired-t Confidence Interval557
10.2.2 A Modified Two-Sample-t Confidence Interval559
10.2.3 Contrasting the Two Methods560
10.2.4 Comparisons Based on Steady-State Measures of Performance560
10.3 Confidence Intervals for Comparing More than Two Systems562
10.3.1 Comparisons with a Standard563
10.3.2 All Pairwise Comparisons564
10.4 Ranking and Selection566
10.3.3 Multiple Comparisons with the Best566
10.4.2 Selecting a Subset of Size m Containing the Best of k Systems569
10.4.3 Selecting the m Best of k Systems570
10.4.4 Additional Problems and Methods572
Appendix 10A:Validity of the Selection Procedures575
Appendix 10B:Constants for the Selection Procedures576
Problems579
Chapter11 Variance-Reduction Techniques581
11.1 Introduction581
11.2 Common Random Numbers582
11.2.1 Rationale583
11.2.2 Applicability584
11.2.3 Synchronization586
11.2.4 Some Examples590
10.4.1 Selecting the Best of k Systems597
11.3 Antithetic Variates598
11.4 Control Variates604
11.5 Indirect Estimation611
11.6 Conditioning613
Problems617
Chapter12 Experimental Design,Sensitivity Analysis,and Optimization622
12.1 Introduction622
12.2 2k Factorial Designs625
12.3 Coping with Many Factors637
12.3.1 2k-p Fractional Factorial Designs638
12.3.2 Factor-Screening Strategies644
12.4 Response Surfaces and Metamodels646
12.5 Sensitivity and Gradient Estimation655
12.6 Optimum Seeking657
12.6.1 Optimum-Seeking Methods659
12.6.2 Optimum-Seeking Packages Interfaced with Simulation Software662
Problems666
Chapter13 Simulation of Manufacturing Systems669
13.1 Introduction669
13.2 Objectives of Simulation in Manufacturing670
13.3 Simulation Software for Manufacturing Applications672
13.4 Modeling System Randomness675
13.4.1 Sources of Randomness675
13.4.2 Machine Downtimes678
13.5 An Extended Example684
13.5.1 Problem Description and Simulation Results684
13.5.2 Statistical Calculations693
13.6.1 Description of the System695
13.6 A Simulation Case Study of a Metal-Parts Manufacturing Facility695
13.6.2 Overall Objectives and Issues to Be Investigated696
13.6.3 Development of the Model696
13.6.4 Model Verification and Validation697
13.6.5 Results of the Simulation Experiments699
13.6.6 Conclusions and Benefits701
Problems702
Appendix707
References711
Subject Index745