图书介绍
COMBUSTION PHYSICSPDF|Epub|txt|kindle电子书版本网盘下载
- 著
- 出版社: CAMBRIDGE UNIVERSITY PRESS
- ISBN:0521870526
- 出版时间:2006
- 标注页数:722页
- 文件大小:297MB
- 文件页数:739页
- 主题词:
PDF下载
下载说明
COMBUSTION PHYSICSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
INTRODUCTION1
0.1.Major Areas of Combustion Application1
0.2.Scientific Disciplines Comprising Combustion6
0.3.Classifications of Fundamental Combustion Phenomena7
0.4.Organization of the Text10
0.5.Literature Sources12
1.CHEMICAL THERMODYNAMICS14
1.1.Practical Reactants and Stoichiometry14
1.1.1.Practical Reactants14
1.1.2.Stoichiometry15
1.2.Chemical Equilibrium16
1.2.1.First and Second Laws16
1.2.2.Thermodynamic Functions16
1.2.3.Criterion for Chemical Equilibrium18
1.2.4.Phase Equilibrium18
1.2.5.Equilibrium Constants21
1.2.6.Equilibrium Constants in the Presence of Condensed Phases22
1.2.7.Multiple Reactions24
1.2.8.Element Conservation24
1.2.9.Restricted Equilibrium25
1.3.Equilibrium Composition Calculations26
1.3.1.Equilibrium Composition of Hydrocarbon-Air Mixtures26
1.3.2.The Major-Minor Species Model28
1.3.3.Computer Solutions30
1.4.Energy Conservation31
1.4.1.Heats of Formation,Reaction,and Combustion31
1.4.2.Estimation of Heat of Reaction from Bond Energies34
1.4.3.Determination of Heat of Reaction from Kp(T)35
1.4.4.Sensible Energies and Heat Capacities35
1.4.5.Energy Conservation in Adiabatic Chemical Systems37
1.4.6.Adiabatic Flame Temperature and Equilibrium Composition37
PROBLEMS49
2.CHEMICAL KINETICS51
2.1.Phenomenological Law of Reaction Rates52
2.1.1.The Law of Mass Action52
2.1.2.Reversible Reactions53
2.1.3.Multistep Reactions54
2.1.4.Steady-State Approximation54
2.1.5.Partial Equilibrium Approximation55
2.1.6.Approximations by Global and Semiglobal Reactions56
2.1.7.Reaction Order and Molecularity57
2.2.Theories of Reaction Rates:Basic Concepts58
2.2.1.The Arrhenius Law58
2.2.2.The Activation Energy59
2.2.3.Collision Theory of Reaction Rates62
2.2.4.Transition State Theory of Reaction Rates64
2.3.Theories of Reaction Rates:Unimolecular Reactions67
2.3.1.Lindemann Theory68
2.3.2.Rice-Ramsperger-Kassel(RRK)Theory70
2.3.3.Representation of Unimolecular Reaction Rate Constants71
2.3.4.Chemically Activated Reactions72
2.4.Chain Reaction Mechanisms74
2.4.1.Straight-Chain Reactions:The Hydrogen-Halogen System74
2.4.2.Branched-Chain Reactions76
2.4.3.Flame Inhibitors79
2.5.Experimental and Computational Techniques80
PROBLEMS81
3.OXIDATION MECHANISMS OF FUELS84
3.1.Practical Fuels85
3.2.Oxidation of Hydrogen and Carbon Monoxide89
3.2.1.Explosion Limits of Hydrogen-Oxygen Mixtures89
3.2.2.Carbon Monoxide Oxidation94
3.2.3.Initiation Reactions in Flames94
3.3.Oxidation of Methane95
3.3.1.General Considerations of Hydrocarbon Oxidation95
3.3.2.Methane Autoignition96
3.3.3.Methane Flames99
3.4.Oxidation of C2 Hydrocarbons100
3.5.Oxidation of Alcohols102
3.6.High-Temperature Oxidation of Higher Aliphatic Fuels103
3.6.1.The β-Scission Rule104
3.6.2.Oxidation Mechanisms106
3.7.Oxidation of Aromatics109
3.8.Hydrocarbon Oxidation at Low to Intermediate Temperatures112
3.9.Chemistry of Pollutant Formation115
3.9.1.Oxides of Nitrogen116
3.9.2.Soot Formation119
3.10.Mechanism Development and Reduction122
3.10.1.Postulated Semiglobal Mechanisms122
3.10.2.Need for Comprehensiveness and Reduction124
3.11.Systematic Reduction:The Hydrogen-Oxygen System124
3.11.1.Reduction to Skeletal Mechanisms125
3.11.2.Linearly Independent Representation128
3.11.3.Reduction through QSS Assumption129
3.12.Theories of Mechanism Reduction132
3.12.1.Sensitivity Analysis132
3.12.2.Theory of Directed Relation Graph133
3.12.3.Theory of Computational Singular Perturbation135
3.12.4.Mechanism Validation137
PROBLEMS139
4.TRANSPORT PHENOMENA141
4.1.Phenomenological Derivation of Diffusion Coefficients143
4.1.1.Derivation143
4.1.2.Discussion on Diffusion Coefficients145
4.1.3.Characteristic Diffusion Rates and Nondimensional Numbers145
4.1.4.Second-Order Diffusion146
4.2.Some Useful Results from Kinetic Theory of Gases146
4.2.1.General Concepts146
4.2.2.Collision Potentials and Integrals148
4.2.3.Transport Coefficients151
PROBLEMS155
5.CONSERVATION EQUATIONS157
5.1.Control Volume Derivation157
5.1.1.Conservation of Total Mass158
5.1.2.Conservation of Individual Species158
5.1.3.Conservation of Momentum160
5.1.4.Conservation of Energy160
5.1.5.Conservation Relations across an Interface162
5.2.Governing Equations163
5.2.1.Conservation Equations163
5.2.2.Constitutive Relations163
5.2.3.Auxiliary Relations166
5.2.4.Some Useful Approximations167
5.3.A Simplified Diffusion-Controlled System170
5.3.1.Assumptions170
5.3.2.Derivation170
5.4.Conserved Scalar Formulations172
5.4.1.Coupling Function Formulation173
5.4.2.Local Coupling Function Formulation176
5.4.3.Near-Equidiffusion Formulation177
5.4.4.Element Conservation Formulation178
5.4.5.Mixture Fraction Formulation179
5.4.6.Progress Variable Formulation182
5.5.Reaction-Sheet Formulation182
5.5.1.Jump Relations for Coupling Functions182
5.5.2.Adiabatic Flame Temperature185
5.6.Further Development of the Simplified Diffusion-Controlled System187
5.6.1.Conservation Equations187
5.6.2.Nondimensional Numbers188
NOMENCLATURE190
PROBLEMS192
6.LAMINAR NONPREMIXED FLAMES194
6.1.The One-Dimensional Chambered Flame196
6.1.1.Coupling Function Formulation196
6.1.2.Reaction-Sheet Formulation199
6.1.3.Mixture Fraction Formulation200
6.1.4.Element Conservation Formulation201
6.2.The Burke-Schumann Flame202
6.3.Condensed Fuel Vaporization and the Stefan Flow208
6.4.Droplet Vaporization and Combustion213
6.4.1.Phenomenology213
6.4.2.d2-Law of Droplet Vaporization214
6.4.3.d2-Law of Droplet Combustion217
6.4.4.Experimental Results on Single-Component Droplet Combustion222
6.5.The Counterflow Flame224
PROBLEMS230
7.LAMINAR PREMIXED FLAMES234
7.1.Combustion Waves in Premixtures235
7.1.1.Rankine-Hugoniot Relations235
7.1.2.Detonation and Deflagration Waves238
7.1.3.Chapman-Jouguet Waves239
7.1.4.Preliminary Discussion of Detonation Waves240
7.2.Phenomenological Description of the Standard Flame241
7.2.1.Flame Structure241
7.2.2.Laminar Burning Flux and Flame Thickness244
7.3.Mathematical Formulation246
7.3.1.Governing Equations246
7.3.2.The Cold Boundary Difficulty249
7.4.Approximate Analyses250
7.4.1.Integral Analysis250
7.4.2.Frank-Kamenetskii Solution253
7.5.Asymptotic Analysis255
7.5.1.Distinguished Limit255
7.5.2.Asymptotic Solution256
7.5.3.Dependence of Burning Flux on Flame Temperature263
7.6.Determination of Laminar Flame Speeds263
7.6.1.Bunsen Flame Method265
7.6.2.Flat and One-Dimensional Flame Methods266
7.6.3.Outwardly Propagating Spherical Flame Method268
7.6.4.Stagnation Flame Method271
7.6.5.Numerical Computation273
7.6.6.Profile-Based Determination274
7.7.Dependence of Laminar Burning Velocities275
7.7.1.Dependence on Tad and Le275
7.7.2.Dependence on Molecular Structure277
7.7.3.Dependence on Pressure278
7.7.4.Dependence on Freestream Temperature282
7.7.5.Dependence on Transport Properties283
7.8.Chemical Structure of Flames284
7.8.1.Experimental Methods285
7.8.2.Detailed Structure286
7.8.3.Asymptotic Structure with Reduced Mechanisms294
PROBLEMS301
8.LIMIT PHENOMENA303
8.1.Phenomenological Considerations of Ignition and Extinction305
8.1.1.Quenching Distances and Minimum Ignition Energies305
8.1.2.Adiabatic Thermal Explosion307
8.1.3.Nonadiabatic Explosion and the Semenov Criterion309
8.1.4.The Well-Stirred Reactor Analogy311
8.1.5.The S-Curve Concept313
8.2.Ignition by a Hot Surface317
8.2.1.Asymptotic Analysis of the Reaction Zone318
8.2.2.Ignition of a Confined Mixture by a Flat Plate322
8.2.3.Ignition of an Unconfined Mixture by a Flat Plate324
8.2.4.Nusselt Number Correlation326
8.2.5.Convection-Free Formulation326
8.3.Ignition of Hydrogen by Heated Air327
8.3.1.Global Response to Strain Rate Variations328
8.3.2.Second Ignition Limit330
8.3.3.First and Third Ignition Limits333
8.3.4.Decoupled Environment and Kinetic versus Thermal Feedback335
8.3.5.Multiple Criticality and Staged Ignition338
8.4.Premixed Flame Extinction through Volumetric Heat Loss339
8.4.1.Phenomenological Derivation341
8.4.2.Frank-Kamenetskii Solution344
8.5.Flammability Limits346
8.5.1.Empirical Limits346
8.5.2.Fundamental Limits348
8.6.Flame Stabilization and Blowoff353
8.6.1.The Flat-Burner Flame353
8.6.2.Stabilization of Premixed Flame at Burner Rim358
8.6.3.Stabilization of Nonpremixed Flame at Burner Rim361
8.6.4.Stabilization of Lifted Flames362
PROBLEMS364
9.ASYMPTOTIC STRUCTURE OF FLAMES366
9.1.Structure of Premixed Flames367
9.1.1.Structure Equation368
9.1.2.Delta Function Closure and Jump Relations370
9.1.3.Reduction to Canonical Form373
9.2.Structure of Nonpremixed Flames:Classification376
9.2.1.Classification of Flow Types377
9.2.2.Classification of Flame Regimes377
9.2.3.Parametric Boundaries of Flame Regimes381
9.3.Structure of Nonpremixed Flames:Analysis385
9.3.1.Nearly Frozen Regime385
9.3.2.Partial Burning Regime386
9.3.3.Premixed Flame Regime387
9.3.4.Near-Equilibrium Regime388
9.4.Mixture Fraction Formulation for Near-Equilibrium Regime392
PROBLEMS394
10.AERODYNAMICS OF LAMINAR FLAMES396
10.1.General Concepts396
10.2.Hydrodynamic Stretch399
10.2.1.The G-Equation399
10.2.2.Corner Formation in Landau Propagation400
10.2.3.Burning Rate Increase through Flame Wrinkling403
10.2.4.The Stretch Rate405
10.3.Flame Stretch:Phenomenology410
10.3.1.Effects of Flow Straining:The Stagnation Flame410
10.3.2.Effects of Flame Curvature:The Bunsen Flame413
10.3.3.Effects of Flame Motion:The Unsteady Spherical Flame414
10.3.4.Effects of Heat Loss415
10.4.Flame Stretch:Analyses416
10.4.1.Effects of Flame Stretch416
10.4.2.Effects of Pure Curvature422
10.4.3.Combined Solution424
10.4.4.Asymptotic Analysis of the Counterflow Flame424
10.5.Experimental and Computational Results428
10.5.1.Equidiffusive Flames428
10.5.2.Nonequidiffusive Flames429
10.6.Further Implications of Stretched Flame Phenomena439
10.6.1.Determination of Laminar Flame Parameters439
10.6.2.Dual Extinction States and Extended Flammability Limits442
10.6.3.Other Phenomena446
10.7.Simultaneous Consideration of Hydrodynamic and Flame Stretch448
10.7.1.Curvature-Induced Corner Broadening448
10.7.2.Inversion and Tip Opening of Bunsen Flames450
10.8.Unsteady Dynamics452
10.9.Flamefront Instabilities456
10.9.1.Mechanisms of Cellular Instabilities456
10.9.2.Analysis of Cellular Instabilities461
10.9.3.Mechanisms of Pulsating Instabilities466
10.9.4.Effects of Heat Loss and Aerodynamic Straining469
PROBLEMS471
11.COMBUSTION IN TURBULENT FLOWS474
11.1.General Concepts474
11.1.1.Origin and Structure474
11.1.2.Probabilistic Description477
11.1.3.Turbulence Scales480
11.2.Simulation and Modeling483
11.2.1.Direct Numerical Simulation485
11.2.2.Reynolds-Averaged Navier-Stokes Models486
11.2.3.Large Eddy Simulation491
11.2.4.Probability Density Functions493
11.2.5.Closure of the Reaction Rate Term494
11.3.Premixed Turbulent Combustion496
11.3.1.Regimes of Combustion Modes496
11.3.2.Turbulent Burning Velocities500
11.3.3.Flamelet Modeling506
11.4.Nonpremixed Turbulent Combustion509
11.4.1.Regimes of Combustion Modes509
11.4.2.Mixture Fraction Modeling511
PROBLEMS514
12.COMBUSTION IN BOUNDARY-LAYER FLOWS516
12.1.Considerations of Steady Two-Dimensional Boundary-Layer Flows518
12.1.1.Governing Equations518
12.1.2.Transformation to Boundary-Layer Variables521
12.1.3.Discussion on Similarity523
12.2.Nonpremixed Burning of an Ablating Surface526
12.3.Ignition of a Premixed Combustible529
12.3.1.Ignition at the Stagnation Point529
12.3.2.Ignition along a Flat Plate530
12.3.3.Ignition in the Mixing Layer533
12.3.4.Flame Stabilization and Blowoff in High-Speed Flows536
12.4.Jet Flows537
12.4.1.Similarity Solution538
12.4.2.Height of Nonpremixed Jet Flames540
12.4.3.Stabilization and Blowout of Lifted Flames542
12.5.Supersonic Boundary-Layer Flows548
12.5.1.Nonpremixed Burning of an Ablating Surface549
12.5.2.Ignition along a Flat Plate550
12.6.Natural Convection Boundary-Layer Flows551
PROBLEMS556
13.COMBUSTION IN TWO-PHASE FLOWS559
13.1.General Considerations of Droplet Combustion560
13.1.1.Phenomenology560
13.1.2.Experimental Considerations563
13.2.Single-Component Droplet Combustion565
13.2.1.Droplet Heating565
13.2.2.Fuel Vapor Accumulation569
13.2.3.Variable Property Effects572
13.2.4.Gas-Phase Transient Diffusion and High-Pressure Combustion573
13.2.5.Convection Effects and Droplet Dynamics575
13.2.6.Droplet Interaction578
13.2.7.Dynamics of Droplet Collision581
13.2.8.Ignition and Extinction Criteria584
13.3.Multicomponent Droplet Combustion585
13.3.1.Miscible Mixtures586
13.3.2.Microexplosion Phenomenon595
13.3.3.Emulsions and Slurries597
13.3.4.Alcohols and Reactive Liquid Propellants599
13.4.Carbon Particle Combustion602
13.4.1.Phenomenology602
13.4.2.Global Kinetics of Carbon Oxidation603
13.4.3.Analysis604
13.4.4.Limiting Solutions607
13.5.Metal Particle Combustion611
13.6.Phenomenology of Spray Combustion613
13.6.1.One-Dimensional,Planar,Spray Flames613
13.6.2.Spray Jet Flames614
13.6.3.Cloud and Dense Spray Combustion615
13.7.Formulation of Spray Combustion617
13.7.1.Spray Statistics617
13.7.2.Conservation Equations620
13.8.Adiabatic Spray Vaporization621
13.9.Heterogeneous Laminar Flames625
13.9.1.Gas-Phase Flames626
13.9.2.Condensed-Phase Flames629
PROBLEMS631
14.COMBUSTION IN SUPERSONIC FLOWS634
14.1.Frozen and Equilibrium Flows635
14.1.1.Governing Equations for Nondiffusive Flows635
14.1.2.Entropy Production636
14.1.3.Speed of Sound636
14.1.4.Acoustic Equations638
14.2.Dynamics of Weakly Perturbed Flows640
14.2.1.One-Dimensional Propagation of Acoustic Waves640
14.2.2.Uniform Flow over Slender Bodies643
14.3.Steady,Quasi-One-Dimensional Flows645
14.3.1.Nonlinear Flows645
14.3.2.Linearized Nozzle Flows646
14.4.Method of Characteristics647
14.4.1.General Procedure for Two Independent Variables648
14.4.2.Unsteady,One-Dimensional,Frozen,Isentropic Flows650
14.4.3.Steady Two-Dimensional Flows651
14.5.Steady One-Dimensional Detonations654
14.5.1.Chapman-Jouguet Detonations654
14.5.2.Overdriven Detonations655
14.5.3.Taylor Expansion Waves656
14.5.4.ZND Structure of Detonation Waves659
14.5.5.Eigenvalue Structure of Quasi-One-Dimensional Detonations662
14.6.Unsteady Three-Dimensional Detonations664
14.6.1.Pulsating Instability of the ZND Structure665
14.6.2.Triple-Shock Structure667
14.6.3.Triple-Shock Interactions671
14.6.4.The Complex Structure673
14.7.Propagation of Strong Blast Waves674
14.8.Direct Detonation Initiation678
14.8.1.The Zel’dovich Criterion678
14.8.2.Curvature-Induced Quenching Limit679
14.8.3.Curvature-Affected Initiation Limit684
14.9.Indirect Detonation Initiation685
14.9.1.Synchronized Initiation685
14.9.2.Deflagration-to-Detonation Transition686
PROBLEMS687
References693
Author Index711
Subject Index716