图书介绍

COMBUSTION PHYSICSPDF|Epub|txt|kindle电子书版本网盘下载

COMBUSTION PHYSICS
  • 出版社: CAMBRIDGE UNIVERSITY PRESS
  • ISBN:0521870526
  • 出版时间:2006
  • 标注页数:722页
  • 文件大小:297MB
  • 文件页数:739页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

COMBUSTION PHYSICSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

INTRODUCTION1

0.1.Major Areas of Combustion Application1

0.2.Scientific Disciplines Comprising Combustion6

0.3.Classifications of Fundamental Combustion Phenomena7

0.4.Organization of the Text10

0.5.Literature Sources12

1.CHEMICAL THERMODYNAMICS14

1.1.Practical Reactants and Stoichiometry14

1.1.1.Practical Reactants14

1.1.2.Stoichiometry15

1.2.Chemical Equilibrium16

1.2.1.First and Second Laws16

1.2.2.Thermodynamic Functions16

1.2.3.Criterion for Chemical Equilibrium18

1.2.4.Phase Equilibrium18

1.2.5.Equilibrium Constants21

1.2.6.Equilibrium Constants in the Presence of Condensed Phases22

1.2.7.Multiple Reactions24

1.2.8.Element Conservation24

1.2.9.Restricted Equilibrium25

1.3.Equilibrium Composition Calculations26

1.3.1.Equilibrium Composition of Hydrocarbon-Air Mixtures26

1.3.2.The Major-Minor Species Model28

1.3.3.Computer Solutions30

1.4.Energy Conservation31

1.4.1.Heats of Formation,Reaction,and Combustion31

1.4.2.Estimation of Heat of Reaction from Bond Energies34

1.4.3.Determination of Heat of Reaction from Kp(T)35

1.4.4.Sensible Energies and Heat Capacities35

1.4.5.Energy Conservation in Adiabatic Chemical Systems37

1.4.6.Adiabatic Flame Temperature and Equilibrium Composition37

PROBLEMS49

2.CHEMICAL KINETICS51

2.1.Phenomenological Law of Reaction Rates52

2.1.1.The Law of Mass Action52

2.1.2.Reversible Reactions53

2.1.3.Multistep Reactions54

2.1.4.Steady-State Approximation54

2.1.5.Partial Equilibrium Approximation55

2.1.6.Approximations by Global and Semiglobal Reactions56

2.1.7.Reaction Order and Molecularity57

2.2.Theories of Reaction Rates:Basic Concepts58

2.2.1.The Arrhenius Law58

2.2.2.The Activation Energy59

2.2.3.Collision Theory of Reaction Rates62

2.2.4.Transition State Theory of Reaction Rates64

2.3.Theories of Reaction Rates:Unimolecular Reactions67

2.3.1.Lindemann Theory68

2.3.2.Rice-Ramsperger-Kassel(RRK)Theory70

2.3.3.Representation of Unimolecular Reaction Rate Constants71

2.3.4.Chemically Activated Reactions72

2.4.Chain Reaction Mechanisms74

2.4.1.Straight-Chain Reactions:The Hydrogen-Halogen System74

2.4.2.Branched-Chain Reactions76

2.4.3.Flame Inhibitors79

2.5.Experimental and Computational Techniques80

PROBLEMS81

3.OXIDATION MECHANISMS OF FUELS84

3.1.Practical Fuels85

3.2.Oxidation of Hydrogen and Carbon Monoxide89

3.2.1.Explosion Limits of Hydrogen-Oxygen Mixtures89

3.2.2.Carbon Monoxide Oxidation94

3.2.3.Initiation Reactions in Flames94

3.3.Oxidation of Methane95

3.3.1.General Considerations of Hydrocarbon Oxidation95

3.3.2.Methane Autoignition96

3.3.3.Methane Flames99

3.4.Oxidation of C2 Hydrocarbons100

3.5.Oxidation of Alcohols102

3.6.High-Temperature Oxidation of Higher Aliphatic Fuels103

3.6.1.The β-Scission Rule104

3.6.2.Oxidation Mechanisms106

3.7.Oxidation of Aromatics109

3.8.Hydrocarbon Oxidation at Low to Intermediate Temperatures112

3.9.Chemistry of Pollutant Formation115

3.9.1.Oxides of Nitrogen116

3.9.2.Soot Formation119

3.10.Mechanism Development and Reduction122

3.10.1.Postulated Semiglobal Mechanisms122

3.10.2.Need for Comprehensiveness and Reduction124

3.11.Systematic Reduction:The Hydrogen-Oxygen System124

3.11.1.Reduction to Skeletal Mechanisms125

3.11.2.Linearly Independent Representation128

3.11.3.Reduction through QSS Assumption129

3.12.Theories of Mechanism Reduction132

3.12.1.Sensitivity Analysis132

3.12.2.Theory of Directed Relation Graph133

3.12.3.Theory of Computational Singular Perturbation135

3.12.4.Mechanism Validation137

PROBLEMS139

4.TRANSPORT PHENOMENA141

4.1.Phenomenological Derivation of Diffusion Coefficients143

4.1.1.Derivation143

4.1.2.Discussion on Diffusion Coefficients145

4.1.3.Characteristic Diffusion Rates and Nondimensional Numbers145

4.1.4.Second-Order Diffusion146

4.2.Some Useful Results from Kinetic Theory of Gases146

4.2.1.General Concepts146

4.2.2.Collision Potentials and Integrals148

4.2.3.Transport Coefficients151

PROBLEMS155

5.CONSERVATION EQUATIONS157

5.1.Control Volume Derivation157

5.1.1.Conservation of Total Mass158

5.1.2.Conservation of Individual Species158

5.1.3.Conservation of Momentum160

5.1.4.Conservation of Energy160

5.1.5.Conservation Relations across an Interface162

5.2.Governing Equations163

5.2.1.Conservation Equations163

5.2.2.Constitutive Relations163

5.2.3.Auxiliary Relations166

5.2.4.Some Useful Approximations167

5.3.A Simplified Diffusion-Controlled System170

5.3.1.Assumptions170

5.3.2.Derivation170

5.4.Conserved Scalar Formulations172

5.4.1.Coupling Function Formulation173

5.4.2.Local Coupling Function Formulation176

5.4.3.Near-Equidiffusion Formulation177

5.4.4.Element Conservation Formulation178

5.4.5.Mixture Fraction Formulation179

5.4.6.Progress Variable Formulation182

5.5.Reaction-Sheet Formulation182

5.5.1.Jump Relations for Coupling Functions182

5.5.2.Adiabatic Flame Temperature185

5.6.Further Development of the Simplified Diffusion-Controlled System187

5.6.1.Conservation Equations187

5.6.2.Nondimensional Numbers188

NOMENCLATURE190

PROBLEMS192

6.LAMINAR NONPREMIXED FLAMES194

6.1.The One-Dimensional Chambered Flame196

6.1.1.Coupling Function Formulation196

6.1.2.Reaction-Sheet Formulation199

6.1.3.Mixture Fraction Formulation200

6.1.4.Element Conservation Formulation201

6.2.The Burke-Schumann Flame202

6.3.Condensed Fuel Vaporization and the Stefan Flow208

6.4.Droplet Vaporization and Combustion213

6.4.1.Phenomenology213

6.4.2.d2-Law of Droplet Vaporization214

6.4.3.d2-Law of Droplet Combustion217

6.4.4.Experimental Results on Single-Component Droplet Combustion222

6.5.The Counterflow Flame224

PROBLEMS230

7.LAMINAR PREMIXED FLAMES234

7.1.Combustion Waves in Premixtures235

7.1.1.Rankine-Hugoniot Relations235

7.1.2.Detonation and Deflagration Waves238

7.1.3.Chapman-Jouguet Waves239

7.1.4.Preliminary Discussion of Detonation Waves240

7.2.Phenomenological Description of the Standard Flame241

7.2.1.Flame Structure241

7.2.2.Laminar Burning Flux and Flame Thickness244

7.3.Mathematical Formulation246

7.3.1.Governing Equations246

7.3.2.The Cold Boundary Difficulty249

7.4.Approximate Analyses250

7.4.1.Integral Analysis250

7.4.2.Frank-Kamenetskii Solution253

7.5.Asymptotic Analysis255

7.5.1.Distinguished Limit255

7.5.2.Asymptotic Solution256

7.5.3.Dependence of Burning Flux on Flame Temperature263

7.6.Determination of Laminar Flame Speeds263

7.6.1.Bunsen Flame Method265

7.6.2.Flat and One-Dimensional Flame Methods266

7.6.3.Outwardly Propagating Spherical Flame Method268

7.6.4.Stagnation Flame Method271

7.6.5.Numerical Computation273

7.6.6.Profile-Based Determination274

7.7.Dependence of Laminar Burning Velocities275

7.7.1.Dependence on Tad and Le275

7.7.2.Dependence on Molecular Structure277

7.7.3.Dependence on Pressure278

7.7.4.Dependence on Freestream Temperature282

7.7.5.Dependence on Transport Properties283

7.8.Chemical Structure of Flames284

7.8.1.Experimental Methods285

7.8.2.Detailed Structure286

7.8.3.Asymptotic Structure with Reduced Mechanisms294

PROBLEMS301

8.LIMIT PHENOMENA303

8.1.Phenomenological Considerations of Ignition and Extinction305

8.1.1.Quenching Distances and Minimum Ignition Energies305

8.1.2.Adiabatic Thermal Explosion307

8.1.3.Nonadiabatic Explosion and the Semenov Criterion309

8.1.4.The Well-Stirred Reactor Analogy311

8.1.5.The S-Curve Concept313

8.2.Ignition by a Hot Surface317

8.2.1.Asymptotic Analysis of the Reaction Zone318

8.2.2.Ignition of a Confined Mixture by a Flat Plate322

8.2.3.Ignition of an Unconfined Mixture by a Flat Plate324

8.2.4.Nusselt Number Correlation326

8.2.5.Convection-Free Formulation326

8.3.Ignition of Hydrogen by Heated Air327

8.3.1.Global Response to Strain Rate Variations328

8.3.2.Second Ignition Limit330

8.3.3.First and Third Ignition Limits333

8.3.4.Decoupled Environment and Kinetic versus Thermal Feedback335

8.3.5.Multiple Criticality and Staged Ignition338

8.4.Premixed Flame Extinction through Volumetric Heat Loss339

8.4.1.Phenomenological Derivation341

8.4.2.Frank-Kamenetskii Solution344

8.5.Flammability Limits346

8.5.1.Empirical Limits346

8.5.2.Fundamental Limits348

8.6.Flame Stabilization and Blowoff353

8.6.1.The Flat-Burner Flame353

8.6.2.Stabilization of Premixed Flame at Burner Rim358

8.6.3.Stabilization of Nonpremixed Flame at Burner Rim361

8.6.4.Stabilization of Lifted Flames362

PROBLEMS364

9.ASYMPTOTIC STRUCTURE OF FLAMES366

9.1.Structure of Premixed Flames367

9.1.1.Structure Equation368

9.1.2.Delta Function Closure and Jump Relations370

9.1.3.Reduction to Canonical Form373

9.2.Structure of Nonpremixed Flames:Classification376

9.2.1.Classification of Flow Types377

9.2.2.Classification of Flame Regimes377

9.2.3.Parametric Boundaries of Flame Regimes381

9.3.Structure of Nonpremixed Flames:Analysis385

9.3.1.Nearly Frozen Regime385

9.3.2.Partial Burning Regime386

9.3.3.Premixed Flame Regime387

9.3.4.Near-Equilibrium Regime388

9.4.Mixture Fraction Formulation for Near-Equilibrium Regime392

PROBLEMS394

10.AERODYNAMICS OF LAMINAR FLAMES396

10.1.General Concepts396

10.2.Hydrodynamic Stretch399

10.2.1.The G-Equation399

10.2.2.Corner Formation in Landau Propagation400

10.2.3.Burning Rate Increase through Flame Wrinkling403

10.2.4.The Stretch Rate405

10.3.Flame Stretch:Phenomenology410

10.3.1.Effects of Flow Straining:The Stagnation Flame410

10.3.2.Effects of Flame Curvature:The Bunsen Flame413

10.3.3.Effects of Flame Motion:The Unsteady Spherical Flame414

10.3.4.Effects of Heat Loss415

10.4.Flame Stretch:Analyses416

10.4.1.Effects of Flame Stretch416

10.4.2.Effects of Pure Curvature422

10.4.3.Combined Solution424

10.4.4.Asymptotic Analysis of the Counterflow Flame424

10.5.Experimental and Computational Results428

10.5.1.Equidiffusive Flames428

10.5.2.Nonequidiffusive Flames429

10.6.Further Implications of Stretched Flame Phenomena439

10.6.1.Determination of Laminar Flame Parameters439

10.6.2.Dual Extinction States and Extended Flammability Limits442

10.6.3.Other Phenomena446

10.7.Simultaneous Consideration of Hydrodynamic and Flame Stretch448

10.7.1.Curvature-Induced Corner Broadening448

10.7.2.Inversion and Tip Opening of Bunsen Flames450

10.8.Unsteady Dynamics452

10.9.Flamefront Instabilities456

10.9.1.Mechanisms of Cellular Instabilities456

10.9.2.Analysis of Cellular Instabilities461

10.9.3.Mechanisms of Pulsating Instabilities466

10.9.4.Effects of Heat Loss and Aerodynamic Straining469

PROBLEMS471

11.COMBUSTION IN TURBULENT FLOWS474

11.1.General Concepts474

11.1.1.Origin and Structure474

11.1.2.Probabilistic Description477

11.1.3.Turbulence Scales480

11.2.Simulation and Modeling483

11.2.1.Direct Numerical Simulation485

11.2.2.Reynolds-Averaged Navier-Stokes Models486

11.2.3.Large Eddy Simulation491

11.2.4.Probability Density Functions493

11.2.5.Closure of the Reaction Rate Term494

11.3.Premixed Turbulent Combustion496

11.3.1.Regimes of Combustion Modes496

11.3.2.Turbulent Burning Velocities500

11.3.3.Flamelet Modeling506

11.4.Nonpremixed Turbulent Combustion509

11.4.1.Regimes of Combustion Modes509

11.4.2.Mixture Fraction Modeling511

PROBLEMS514

12.COMBUSTION IN BOUNDARY-LAYER FLOWS516

12.1.Considerations of Steady Two-Dimensional Boundary-Layer Flows518

12.1.1.Governing Equations518

12.1.2.Transformation to Boundary-Layer Variables521

12.1.3.Discussion on Similarity523

12.2.Nonpremixed Burning of an Ablating Surface526

12.3.Ignition of a Premixed Combustible529

12.3.1.Ignition at the Stagnation Point529

12.3.2.Ignition along a Flat Plate530

12.3.3.Ignition in the Mixing Layer533

12.3.4.Flame Stabilization and Blowoff in High-Speed Flows536

12.4.Jet Flows537

12.4.1.Similarity Solution538

12.4.2.Height of Nonpremixed Jet Flames540

12.4.3.Stabilization and Blowout of Lifted Flames542

12.5.Supersonic Boundary-Layer Flows548

12.5.1.Nonpremixed Burning of an Ablating Surface549

12.5.2.Ignition along a Flat Plate550

12.6.Natural Convection Boundary-Layer Flows551

PROBLEMS556

13.COMBUSTION IN TWO-PHASE FLOWS559

13.1.General Considerations of Droplet Combustion560

13.1.1.Phenomenology560

13.1.2.Experimental Considerations563

13.2.Single-Component Droplet Combustion565

13.2.1.Droplet Heating565

13.2.2.Fuel Vapor Accumulation569

13.2.3.Variable Property Effects572

13.2.4.Gas-Phase Transient Diffusion and High-Pressure Combustion573

13.2.5.Convection Effects and Droplet Dynamics575

13.2.6.Droplet Interaction578

13.2.7.Dynamics of Droplet Collision581

13.2.8.Ignition and Extinction Criteria584

13.3.Multicomponent Droplet Combustion585

13.3.1.Miscible Mixtures586

13.3.2.Microexplosion Phenomenon595

13.3.3.Emulsions and Slurries597

13.3.4.Alcohols and Reactive Liquid Propellants599

13.4.Carbon Particle Combustion602

13.4.1.Phenomenology602

13.4.2.Global Kinetics of Carbon Oxidation603

13.4.3.Analysis604

13.4.4.Limiting Solutions607

13.5.Metal Particle Combustion611

13.6.Phenomenology of Spray Combustion613

13.6.1.One-Dimensional,Planar,Spray Flames613

13.6.2.Spray Jet Flames614

13.6.3.Cloud and Dense Spray Combustion615

13.7.Formulation of Spray Combustion617

13.7.1.Spray Statistics617

13.7.2.Conservation Equations620

13.8.Adiabatic Spray Vaporization621

13.9.Heterogeneous Laminar Flames625

13.9.1.Gas-Phase Flames626

13.9.2.Condensed-Phase Flames629

PROBLEMS631

14.COMBUSTION IN SUPERSONIC FLOWS634

14.1.Frozen and Equilibrium Flows635

14.1.1.Governing Equations for Nondiffusive Flows635

14.1.2.Entropy Production636

14.1.3.Speed of Sound636

14.1.4.Acoustic Equations638

14.2.Dynamics of Weakly Perturbed Flows640

14.2.1.One-Dimensional Propagation of Acoustic Waves640

14.2.2.Uniform Flow over Slender Bodies643

14.3.Steady,Quasi-One-Dimensional Flows645

14.3.1.Nonlinear Flows645

14.3.2.Linearized Nozzle Flows646

14.4.Method of Characteristics647

14.4.1.General Procedure for Two Independent Variables648

14.4.2.Unsteady,One-Dimensional,Frozen,Isentropic Flows650

14.4.3.Steady Two-Dimensional Flows651

14.5.Steady One-Dimensional Detonations654

14.5.1.Chapman-Jouguet Detonations654

14.5.2.Overdriven Detonations655

14.5.3.Taylor Expansion Waves656

14.5.4.ZND Structure of Detonation Waves659

14.5.5.Eigenvalue Structure of Quasi-One-Dimensional Detonations662

14.6.Unsteady Three-Dimensional Detonations664

14.6.1.Pulsating Instability of the ZND Structure665

14.6.2.Triple-Shock Structure667

14.6.3.Triple-Shock Interactions671

14.6.4.The Complex Structure673

14.7.Propagation of Strong Blast Waves674

14.8.Direct Detonation Initiation678

14.8.1.The Zel’dovich Criterion678

14.8.2.Curvature-Induced Quenching Limit679

14.8.3.Curvature-Affected Initiation Limit684

14.9.Indirect Detonation Initiation685

14.9.1.Synchronized Initiation685

14.9.2.Deflagration-to-Detonation Transition686

PROBLEMS687

References693

Author Index711

Subject Index716

热门推荐