图书介绍

Stochastic differential equations: an introduction with applications Sixth Edition = 随机微分方程 第6版PDF|Epub|txt|kindle电子书版本网盘下载

Stochastic differential equations: an introduction with applications Sixth Edition = 随机微分方程 第6版
  • Bernt Oksendal 著
  • 出版社: Springer ; 世界图书出版公司
  • ISBN:750627308X
  • 出版时间:2006
  • 标注页数:372页
  • 文件大小:34MB
  • 文件页数:403页
  • 主题词:随机微分方程-研究生-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Stochastic differential equations: an introduction with applications Sixth Edition = 随机微分方程 第6版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Stochastic Analogs of Classical Differential Equations1

1.2 Filtering Problems2

1.3 Stochastic Approach to Deterministic Boundary Value Problems3

1.4 Optimal Stopping3

1.5 Stochastic Control4

1.6 Mathematical Finance4

2 Some Mathematical Preliminaries7

2.1 Probability Spaces,Random Variables and Stochastic Processes7

2.2 An Important Example:Brownian Motion12

Exercises15

3 Ito Integrals21

3.1 Construction of the Ito Integral21

3.2 Some properties of the Ito integral30

3.3 Extensions of the Ito integral34

Exercises37

4 The Ito Formula and the Martingale Representation Theorem43

4.1 The 1-dimensional Ito formula43

4.2 The Multi-dimensional Ito Formula48

4.3 The Martingale Representation Theorem49

Exercises54

5 Stochastic Differential Equations63

5.1 Examples and Some Solution Methods63

5.2 An Existence and Uniqueness Result68

5.3 Weak and Strong Solutions72

Exercises74

6 The Filtering Problem83

6.1 Introduction83

6.2 The 1-Dimensional Linear Filtering Problem85

6.3 The Multidimensional Linear Filtering Problem104

Exercises105

7 Diffusions:Basic Properties113

7.1 The Markov Property113

7.2 The Strong Markov Property116

7.3 The Generator of an Ito Diffusion121

7.4 The Dynkin Formula124

7.5 The Characteristic Operator126

Exercises128

8 Other Topics in Diffusion Theory139

8.1 Kolmogorov’s Backward Equation.The Resolvent139

8.2 The Feynman-Kac Formula.Killing143

8.3 The Martingale Problem146

8.4 When is an Ito Process a Diffusion?148

8.5 Random Time Change153

8.6 The Girsanov Theorem159

Exercises168

9 Applications to Boundary Value Problems175

9.1 The Combined Dirichlet-Poisson Problem.Uniqueness175

9.2 The Dirichlet Problem.Regular Points179

9.3 The Poisson Problem190

Exercises197

10 Application to Optimal Stopping205

10.1 The Time-Homogeneous Case205

10.2 The Time-Inhomogeneous Case218

10.3 Optimal Stopping Problems Involving an Integral222

10.4 Connection with Variational Inequalities224

Exercises228

11 Application to Stochastic Control235

11.1 Statement of the Problem235

11.2 The Hamilton-Jacobi-Bellman Equation237

11.3 Stochastic control problems with terminal conditions251

Exercises252

12 Application to Mathematical Finance261

12.1 Market,portfolio and arbitrage261

12.2 Attainability and Completeness271

12.3 Option Pricing278

Exercises298

Appendix A:Normal Random Variables305

Appendix B:Conditional Expectation309

Appendix C:Uniform Integrability and Martingale Convergence311

Appendix D:An Approximation Result315

Solutions and Additional Hints to Some of the Exercises319

References349

List of Frequently Used Notation and Symbols357

Index361

热门推荐