图书介绍
Stochastic differential equations: an introduction with applications Sixth Edition = 随机微分方程 第6版PDF|Epub|txt|kindle电子书版本网盘下载
- Bernt Oksendal 著
- 出版社: Springer ; 世界图书出版公司
- ISBN:750627308X
- 出版时间:2006
- 标注页数:372页
- 文件大小:34MB
- 文件页数:403页
- 主题词:随机微分方程-研究生-教材-英文
PDF下载
下载说明
Stochastic differential equations: an introduction with applications Sixth Edition = 随机微分方程 第6版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Stochastic Analogs of Classical Differential Equations1
1.2 Filtering Problems2
1.3 Stochastic Approach to Deterministic Boundary Value Problems3
1.4 Optimal Stopping3
1.5 Stochastic Control4
1.6 Mathematical Finance4
2 Some Mathematical Preliminaries7
2.1 Probability Spaces,Random Variables and Stochastic Processes7
2.2 An Important Example:Brownian Motion12
Exercises15
3 Ito Integrals21
3.1 Construction of the Ito Integral21
3.2 Some properties of the Ito integral30
3.3 Extensions of the Ito integral34
Exercises37
4 The Ito Formula and the Martingale Representation Theorem43
4.1 The 1-dimensional Ito formula43
4.2 The Multi-dimensional Ito Formula48
4.3 The Martingale Representation Theorem49
Exercises54
5 Stochastic Differential Equations63
5.1 Examples and Some Solution Methods63
5.2 An Existence and Uniqueness Result68
5.3 Weak and Strong Solutions72
Exercises74
6 The Filtering Problem83
6.1 Introduction83
6.2 The 1-Dimensional Linear Filtering Problem85
6.3 The Multidimensional Linear Filtering Problem104
Exercises105
7 Diffusions:Basic Properties113
7.1 The Markov Property113
7.2 The Strong Markov Property116
7.3 The Generator of an Ito Diffusion121
7.4 The Dynkin Formula124
7.5 The Characteristic Operator126
Exercises128
8 Other Topics in Diffusion Theory139
8.1 Kolmogorov’s Backward Equation.The Resolvent139
8.2 The Feynman-Kac Formula.Killing143
8.3 The Martingale Problem146
8.4 When is an Ito Process a Diffusion?148
8.5 Random Time Change153
8.6 The Girsanov Theorem159
Exercises168
9 Applications to Boundary Value Problems175
9.1 The Combined Dirichlet-Poisson Problem.Uniqueness175
9.2 The Dirichlet Problem.Regular Points179
9.3 The Poisson Problem190
Exercises197
10 Application to Optimal Stopping205
10.1 The Time-Homogeneous Case205
10.2 The Time-Inhomogeneous Case218
10.3 Optimal Stopping Problems Involving an Integral222
10.4 Connection with Variational Inequalities224
Exercises228
11 Application to Stochastic Control235
11.1 Statement of the Problem235
11.2 The Hamilton-Jacobi-Bellman Equation237
11.3 Stochastic control problems with terminal conditions251
Exercises252
12 Application to Mathematical Finance261
12.1 Market,portfolio and arbitrage261
12.2 Attainability and Completeness271
12.3 Option Pricing278
Exercises298
Appendix A:Normal Random Variables305
Appendix B:Conditional Expectation309
Appendix C:Uniform Integrability and Martingale Convergence311
Appendix D:An Approximation Result315
Solutions and Additional Hints to Some of the Exercises319
References349
List of Frequently Used Notation and Symbols357
Index361