图书介绍
超实讲义 英文PDF|Epub|txt|kindle电子书版本网盘下载
![超实讲义 英文](https://www.shukui.net/cover/64/33858915.jpg)
- (新西兰)哥德布拉特著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510032981
- 出版时间:2011
- 标注页数:289页
- 文件大小:48MB
- 文件页数:309页
- 主题词:非标准分析-高等学校-教材-英文
PDF下载
下载说明
超实讲义 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ Foundations1
1 What Are the Hyperreals?3
1.1 Infinitely Small and Large3
1.2 Historical Background4
1.3 What Is a Real Number?11
1.4 Historical References14
2 Large Sets15
2.1 Infinitesimals as Variable Quantities15
2.2 Largeness16
2.3 Filters18
2.4 Examples of Filters18
2.5 Facts About Filters19
2.6 Zorn's Lemma19
2.7 Exercises on Filters21
3 Ultrapower Construction of the Hyperreals23
3.1 The Ring of Real-Valued Sequences23
3.2 Equivalence Modulo an Ultrafilter24
3.3 Exercises on Almost-Everywhere Agreement24
3.4 A Suggestive Logical Notation24
3.5 Exercises on Statement Values25
3.6 The Ultrapower25
3.7 Including the Reals in the Hyperreals27
3.8 Infinitesimals and Unlimited Numbers27
3.9 Enlarging Sets28
3.10 Exercises on Enlargement29
3.11 Extending Functions30
3.12 Exercises on Extensions30
3.13 Partial Functions and Hypersequences31
3.14 Enlarging Relations31
3.15 Exercises on Enlarged Relations32
3.16 Is the Hyperreal System Unique?33
4 The Transfer Principle35
4.1 Transforming Statements35
4.2 Relational Structures38
4.3 The Language of a Relational Structure38
4.4 *-Transforms42
4.5 The Transfer Principle44
4.6 Justifying Transfer46
4.7 Extending Transfer47
5 Hyperreals Great and Small49
5.1 (Un)limited,Infinitesimal,and Appreciable Numbers49
5.2 Arithmetic of Hyperreals50
5.3 On the Use of"Finite"and"Infinite"51
5.4 Halos,Galaxies,and Real Comparisons52
5.5 Exercises on Halos and Galaxies52
5.6 Shadows53
5.7 Exercises on Infinite Closeness54
5.8 Shadows and Completeness54
5.9 Exercise on Dedekind Completeness55
5.10 The Hypernaturals56
5.11 Exercises on Hyperintegers and Primes57
5.12 On the Existence of Infinitely Many Primes57
Ⅱ Basic Analysis59
6 Convergence of Sequences and Series61
6.1 Convergence61
6.2 Monotone Convergence62
6.3 Limits63
6.4 Boundedness and Divergence64
6.5 Cauchy Sequences65
6.6 Cluster Points66
6.7 Exercises on Limits and Cluster Points66
6.8 Limits Superior and Inferior67
6.9 Exercises on limsup and liminf70
6.10 Series71
6.11 Exercises on Convergence of Series71
7 Continuous Functions75
7.1 Cauchy's Account of Continuity75
7.2 Continuity of the Sine Function77
7.3 Limits of Functions78
7.4 Exercises on Limits78
7.5 The Intermediate Value Theorem79
7.6 The Extreme Value Theorem80
7.7 Uniform Continuity81
7.8 Exercises on Uniform Continuity82
7.9 Contraction Mappings and Fixed Points82
7.10 A First Look at Permanence84
7.11 Exercises on Permanence of Functions85
7.12 Sequences of Functions86
7.13 Continuity of a Uniform Limit87
7.14 Continuity in the Extended Hypersequence88
7.15 Was Cauchy Right?90
8 Differentiation91
8.1 The Derivative91
8.2 Increments and Differentials92
8.3 Rules for Derivatives94
8.4 Chain Rule94
8.5 Critical Point Theorem95
8.6 Inverse Function Theorem96
8.7 Partial Derivatives97
8.8 Exercises on Partial Derivatives100
8.9 Taylor Series100
8.10 Incremental Approximation by Taylor's Formula102
8.11 Extending the Incremental Equation103
8.12 Exercises on Increments and Derivatives104
9 The Riemann Integral105
9.1 Riemann Sums105
9.2 The Integral as the Shadow of Riemann Sums108
9.3 Standard Properties of the Integral110
9.4 Differentiating the Area Function111
9.5 Exercise on Average Function Values112
10 Topology of the Reals113
10.1 Interior,Closure,and Limit Points113
10.2 Open and Closed Sets115
10.3 Compactness116
10.4 Compactness and(Uniform)Continuity119
10.5 Topologies on the Hyperreals120
Ⅲ Internal and External Entities123
11 Internal and External Sets125
11.1 Internal Sets125
11.2 Algebra of Internal Sets127
11.3 Internal Least Number Principle and Induction128
11.4 The Overflow Principle129
11.5 Internal Order-Completeness130
11.6 External Sets131
11.7 Defining Internal Sets133
11.8 The Underflow Principle136
11.9 Internal Sets and Permanence137
11.10 Saturation of Internal Sets138
11.11 Saturation Creates Nonstandard Entities140
11.12 The Size of an Internal Set141
11.13 Closure of the Shadow of an Internal Set142
11.14 Interval Topology and Hyper-Open Sets143
12 Internal Functions and Hyperfinite Sets147
12.1 Internal Functions147
12.2 Exercises on Properties of Internal Functions148
12.3 Hyperfinite Sets149
12.4 Exercises on Hyperfiniteness150
12.5 Counting a Hyperfinite Set151
12.6 Hyperfinite Pigeonhole Principle151
12.7 Integrals as Hyperfinite Sums152
Ⅳ Nonstandard Frameworks155
13 Universes and Frameworks157
13.1 What Do We Need in the Mathematical World?158
13.2 Pairs Are Enough159
13.3 Actually,Sets Are Enough160
13.4 Strong Transitivity161
13.5 Universes162
13.6 Superstructures164
13.7 The Language of a Universe166
13.8 Nonstandard Frameworks168
13.9 Standard Entities170
13.10 Internal Entities172
13.11 Closure Properties of Internal Sets173
13.12 Transformed Power Sets174
13.13 Exercises on Internal Sets and Functions176
13.14 External Images Are External176
13.15 Internal Set Definition Principle177
13.16 Internal Function Definition Principle178
13.17 Hyperfiniteness178
13.18 Exercises on Hyperfinite Sets and Sizes180
13.19 Hyperfinite Summation180
13.20 Exercises on Hyperfinite Sums181
14 The Existence of Nonstandard Entities183
14.1 Enlargements183
14.2 Concurrence and Hyperfinite Approximation185
14.3 Enlargements as Ultrapowers187
14.4 Exercises on the Ultrapower Construction189
15 Permanence,Comprehensiveness,Saturation191
15.1 Permanence Principles191
15.2 Robinson's Sequential Lemma193
15.3 Uniformly Converging Sequences of Functions193
15.4 Comprehensiveness195
15.5 Saturation198
Ⅴ Applications201
16 Loeb Measure203
16.1 Rings and Algebras204
16.2 Measures206
16.3 Outer Measures208
16.4 Lebesgue Measure210
16.5 Loeb Measures210
16.6 μ-Approximability212
16.7 Loeb Measure as Approximability214
16.8 Lebesgue Measure via Loeb Measure215
17 Ramsey Theory221
17.1 Colourings and Monochromatic Sets221
17.2 A Nonstandard Approach223
17.3 Proving Ramsey's Theorem224
17.4 The Finite Ramsey Theorem227
17.5 The Paris-Harrington Version228
17.6 Reference229
18 Completion by Enlargement231
18.1 Completing the Rationals231
18.2 Metric Space Completion233
18.3 Nonstandard Hulls234
18.4 p-adic Integers237
18.5 p-adic Numbers245
18.6 Power Series249
18.7 Hyperfinite Expansions in Base p255
18.8 Exercises257
19 Hyperflnite Approximation259
19.1 Colourings and Graphs260
19.2 Boolean Algebras262
19.3 Atomic Algebras265
19.4 Hyperfinite Approximating Algebras267
19.5 Exercises on Generation of Algebras269
19.6 Connecting with the Stone Representation269
19.7 Exercises on Filters and Lattices272
19.8 Hyperfinite-Dimensional Vector Spaces273
19.9 Exercises on(Hyper)Real Subspaces275
19.10 The Hahn-Banach Theorem275
19.11 Exercises on(Hyper)Linear Functionals278
20 Books on Nonstandard Analysis279
Index283