图书介绍
高等数学 下 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![高等数学 下 英文版](https://www.shukui.net/cover/54/33820571.jpg)
- 北京邮电大学高等数学双语教学组编 著
- 出版社: 北京:北京邮电大学出版社
- ISBN:9787563528936
- 出版时间:2012
- 标注页数:339页
- 文件大小:17MB
- 文件页数:352页
- 主题词:高等数学-双语教学-高等学校-教材-英文
PDF下载
下载说明
高等数学 下 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 7 Differential Equations1
7.1 Basic Concepts of Differential Equations1
7.1.1 Examples of Differential Equations1
7.1.2 Basic Concepts3
7.1.3 Geometric Interpretation of the First-Order Differential Equation4
Exercises 7.15
7.2 First-Order Differential Equations6
7.2.1 First-Order Separable Differential Equation6
7.2.2 Homogeneous First-Order Equations8
7.2.3 Linear First-Order Equations10
7.2.4 Bernoulli's Equation13
7.2.5 Some Other Examples that can be Reduced to Linear First-Order Equations14
Exercises 7.216
7.3 Reducible Second-Order Differential Equations17
Exercises 7.321
7.4 Higher-Order Linear Differential Equations22
7.4.1 Some Examples of Linear Differential Equation of Higher-Order22
7.4.2 Structure of Solutions of Linear Differential Equations24
Exercises 7.428
7.5 Higher-Order Linear Equations with Constant Coefficients29
7.5.1 Higher-Order Homogeneous Linear Equations with Constant Coefficients29
7.5.2 Higher-Order Nonhomogeneous Linear Equations with Constant Coefficients33
Exercises 7.539
7.6 Euler's Differential Equation40
Exercises 7.642
7.7 Applications of Differential Equations42
Exercises 7.746
Chapter 8 Vectors and Solid Analytic Geometry54
8.1 Vectors in Plane and in Space54
8.1.1 Vectors54
8.1.2 Operations on Vectors56
8.1.3 Vectors in Plane59
8.1.4 Rectangular Coordinate System61
8.1.5 Vectors in Space63
Exercises 8.166
Part A66
Part B67
8.2 Products of Vectors68
8.2.1 Scalar Product of two Vectors68
8.2.2 Vector Product of two Vectors72
8.2.3 Triple Scalar Product of three Vectors77
8.2.4 Applications of Products of Vectors80
Exercises 8.283
Part A83
Part B84
8.3 Planes and Lines in Space85
8.3.1 Equations of Planes85
8.3.2 Equations of Lines in Space90
Exercises 8.396
Part A96
Part B98
8.4 Surfaces and Space Curves99
8.4.1 Cylinders99
8.4.2 Cones101
8.4.3 Surfaces of Revolution102
8.4.4 Quadric Surfaces104
8.4.5 Space Curves110
8.4.6 Cylindrical Coordinate System114
8.4.7 Spherical Coordinate System115
Exercises 8.4117
Part A117
Part B119
Chapter 9 The Differential Calculus for Multi-variable Functions120
9.1 Definition of Multi-variable Functions and their Basic Properties120
9.1.1 Space R2 and Rn120
9.1.2 Multi-variable Functions128
9.1.3 Visualization of Multi-variable Functions130
9.1.4 Limits and Continuity of Multi-variable Functions135
Exercises 9.1142
Part A142
Part B143
9.2 Partial Derivatives and Total Differentials of Multi-variable Functions143
9.2.1 Partial Derivatives144
9.2.2 Total Differentials149
9.2.3 Higher-Order Partial Derivatives157
9.2.4 Directional Derivatives and the Gradient159
Exercises 9.2166
Part A166
Part B169
9.3 Differentiation of Multi-variable Composite and Implicit Functions169
9.3.1 Partial Derivatives and total Differentials of Multi-variable Composite Functions170
9.3.2 Differentiation of Implicit Functions176
9.3.3 Differentiation of Implicit Functions determined by Equation Systems178
Exercises 9.3181
Part A181
Part B183
Chapter 10 Applications of Multi-variable Functions184
10.1 Approximate Function Values by total Differential184
10.2 Extreme Values of Multi-variable Functions187
10.2.1 Unrestricted Extreme Values187
10.2.2 Global Maxima and Minima190
10.2.3 The Method of Least Squares192
10.2.4 Constrained Extreme Values194
10.2.5 The Method of Lagrange Multipliers196
Exercises 10.2199
Part A199
Part B200
10.3 Applications in Geometry200
10.3.1 Arc Length along a Curve200
10.3.2 Tangent Line and Normal Plane of a Space Curve204
10.3.3 Tangent Planes and Normal Lines to a Surface209
10.3.4 Curvature for Plane Curves213
Exercises 10.3214
Part A214
Part B217
Synthetic exercises217
Chapter 11 Multiple Integrals219
11.1 Concept and Properties of Double Integrals219
11.1.1 Concept of Double Integrals219
11.1.2 Properties of Double Integrals222
Exercises 11.1223
11.2 Evaluation of Double Integrals224
11.2.1 Geometric Meaning of Double Integrals225
11.2.2 Double Integrals in Rectangular Coordinates226
11.2.3 Double Integrals in Polar Coordinates233
11.2.4 Integration by Substitution for Double Integrals in General241
Exercises 11.2246
Part A246
Part B250
11.3 Triple Integrals251
11.3.1 Concept and Properties of Triple Integrals251
11.3.2 Triple Integrals in Rectangular Coordinates252
11.3.3 Triple Integrals in Cylindrical and Spherical Coordinates257
11.3.4 Integration by Substitution for Triple Integrals in General265
Exercises 11.3266
Part A266
Part B269
11.4 Applications of Multiple Integrals270
11.4.1 Surface Area271
11.4.2 The Center of Gravity273
11.4.3 The Moment of Inertia275
Exercises 11.4276
Part A276
Part B276
Chapter 12 Line Integrals and Surface Integrals278
12.1 Line Integrals278
12.1.1 Line Integrals with respect to Arc Length278
12.1.2 Line Integrals with respect to Coordinates284
12.1.3 Relations between two Types of Line Integrals289
Exercises 12.1289
Part A289
Part B292
12.2 Green's Formula and its Applications294
12.2.1 Green's Formula294
12.2.2 Conditions for Path Independence of Line Integrals299
Exercises 12.2307
Part A307
Part B309
12.3 Surface Integrals311
12.3.1 Surface Integrals with respect to Surface Area311
12.3.2 Surface Integrals with respect to Coordinates315
Exercises 12.3323
Part A323
Part B325
12.4 Gauss'Formula326
Exercises 12.4331
Part A331
Part B332
12.5 Stokes'Formula332
12.5.1 Stokes'Formula332
12.5.2 Conditions for Path Independence of Space Line Integrals335
Exercises 12.5337
Bibliography339