图书介绍

离散数学及其应用 第3版PDF|Epub|txt|kindle电子书版本网盘下载

离散数学及其应用 第3版
  • (美)苏杉娜(Susanna,S.E.)著 著
  • 出版社: 北京:高等教育出版社
  • ISBN:704016230X
  • 出版时间:2005
  • 标注页数:906页
  • 文件大小:251MB
  • 文件页数:927页
  • 主题词:离散数学-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

离散数学及其应用 第3版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 The Logic of Compound Statements1

1.1 Logical Form and Logical Equivalence1

1.2 Conditional Statements17

1.3 Valid and Invalid Arguments29

1.4 Application:Digital Logic Circuits43

1.5 Application:Number Systems and Circuits for Addition57

Chapter 2 The Logic of Quantified Statements75

2.1 Introduction to Predicates and Quantified Statements Ⅰ75

2.2 Introduction to Predicates and Quantified Statements Ⅱ88

2.3 Statements Containing Multiple Quantifiers97

2.4 Arguments with Quantified Statements111

Chapter 3 Elementary Number Theory and Methods of Proof125

3.1 Direct Proof and Counterexample Ⅰ:Introduction126

3.2 Direct Proof and Counterexample Ⅱ:Rational Numbers141

3.3 Direct Proof and Counterexample Ⅲ:Divisibility148

3.4 Direct Proof and Counterexample Ⅳ:Division into Cases and the Quotient-Remainder Theorem156

3.5 Direct Proof and Counterexample Ⅴ:Floor and Ceiling164

3.6 Indirect Argument:Contradiction and Contraposition171

3.7 Two Classical Theorems179

3.8 Application:Algorithms186

Chapter 4 Sequences and Mathematical Induction199

4.1 Sequences199

4.2 Mathematical Induction Ⅰ215

4.3 Mathematical Induction Ⅱ227

4.4 Strong Mathematical Induction and the Well-Ordering Principle235

4.5 Application:Correctness of Algorithms244

Chapter 5 Set Theory255

5.1 Basic Definitions of Set Theory255

5.2 Properties of Sets269

5.3 Disproofs,Algebraic Proofs,and Boolean Algebras282

5.4 Russell's Paradox and the Halting Problem293

Chapter 6 Counting and Probability297

6.1 Introduction298

6.2 Possibility Trees and the Multiplication Rule306

6.3 Counting Elements of Disjoint Sets:The Addition Rule321

6.4 Counting Subsets of a Set:Combinations334

6.5 r-Combinations with Repetition Allowed349

6.6 The Algebra of Combinations356

6.7 The Binomial Theorem362

6.8 Probability Axioms and Expected Value370

6.9 Conditional Probability,Bayes'Formula,and Independent Events375

Chapter 7 F unctions389

7.1 Functions Defined on General Sets389

7.2 One-to-One and Onto,Inverse Functions402

7.3 Application:The Pigeonhole Principle420

7.4 Composition of Functions431

7.5 Cardinality with Applications to Computability443

Chapter 8 Recursion457

8.1 Recursively Defined Sequences457

8.2 Solving Recurrence Relations by lteration475

8.3 Second-Order Linear Homogenous Recurrence Relations with Constant Coefficients487

8.4 General Recursive Definitions499

Chapter 9 The Efficiency of Algorithms510

9.1 Real-Valued Functions of a Real Variable and Their Graphs510

9.2 O,Ω,and?Notations518

9.3 Application:Efficiency of Algorithms Ⅰ531

9.4 Exponential and Logarithmic Functions:Graphs and Orders543

9.5 Application:Efficiency of Algorithms Ⅱ557

Chapter 10 Relations571

10.1 Relations on Sets571

10.2 Reflexivity,Symmetry,and Transitivity584

10.3 Equivalence Relations594

10.4 Modular Arithmetic with Applications to Cryptography611

10.5 Partial Order Relations632

Chapter 11 Graphs and Trees649

11.1 Graphs:An Introduction649

11.2 Paths and Circuits665

11.3 Matrix Representations of Graphs683

11.4 Isomorphisms of Graphs697

11.5 Trees705

11.6 Spanning Trees723

Chapter 12 Regular Expressions and Finite-State Automata734

12.1 Formal Languages and Regular Expressions735

12.2 Finite-State Automata745

12.3 Simplifying Finite-State Automata763

热门推荐