图书介绍
Numerical Recipes 3rd Edition: The Art of Scientific ComputingPDF|Epub|txt|kindle电子书版本网盘下载
![Numerical Recipes 3rd Edition: The Art of Scientific Computing](https://www.shukui.net/cover/22/32060889.jpg)
- William H. Press 著
- 出版社: Cambridge University Press
- ISBN:9780521880688
- 出版时间:2007
- 标注页数:1235页
- 文件大小:490MB
- 文件页数:1257页
- 主题词:
PDF下载
下载说明
Numerical Recipes 3rd Edition: The Art of Scientific ComputingPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Preliminaries1
1.0 Introduction1
1.1 Error,Accuracy,and Stability8
1.2 C Family Syntax12
1.3 Objects,Classes,and Inheritance17
1.4 Vector and Matrix Objects24
1.5 Some Further Conventions and Capabilities30
2 Solution of Linear Algebraic Equations37
2.0 Introduction37
2.1 Gauss-Jordan Elimination41
2.2 Gaussian Elimination with Backsubstitution46
2.3 LU Decomposition and Its Applications48
2.4 Tridiagonal and Band-Diagonal Systems of Equations56
2.5 Iterative Improvement of a Solution to Linear Equations61
2.6 Singular Value Decomposition65
2.7 Sparse Linear Systems75
2.8 Vandermonde Matrices and Toeplitz Matrices93
2.9 Cholesky Decomposition100
2.10 QR Decomposition102
2.11 Is Matrix Inversion an N3 Process?106
3 Interpolation and Extrapolation110
3.0 Introduction110
3.1 Preliminaries:Searching an Ordered Table114
3.2 Polynomial Interpolation and Extrapolation118
3.3 Cubic Spline Interpolation120
3.4 Rational Function Interpolation and Extrapolation124
3.5 Coefficients of the Interpolating Polynomial129
3.6 Interpolation on a Grid in Multidimensions132
3.7 Interpolation on Scattered Data in Multidimensions139
3.8 Laplace Interpolation150
4 Integration of Functions155
4.0 Introduction155
4.1 Classical Formulas for Equally Spaced Abscissas156
4.2 Elementary Algorithms162
4.3 Romberg Integration166
4.4 Improper Integrals167
4.5 Quadrature by Variable Transformation172
4.6 Gaussian Quadratures and Orthogonal Polynomials179
4.7 Adaptive Quadrature194
4.8 Multidimensional Integrals196
5 Evaluation of Functions201
5.0 Introduction201
5.1 Polynomials and Rational Functions201
5.2 Evaluation of Continued Fractions206
5.3 Series and Their Convergence209
5.4 Recurrence Relations and Clenshaw’s Recurrence Formula219
5.5 Complex Arithmetic225
5.6 Quadratic and Cubic Equations227
5.7 Numerical Derivatives229
5.8 Chebyshev Approximation233
5.9 Derivatives or Integrals of a Chebyshev-Approximated Function240
5.10 Polynomial Approximation from Chebyshev Coefficients241
5.11 Economization of Power Series243
5.12 Pade Approximants245
5.13 Rational Chebyshev Approximation247
5.14 Evaluation of Functions by Path Integration251
6 Special Functions255
6.0 Introduction255
6.1 Gamma Function,Beta Function,Factorials,Binomial Coefficients256
6.2 Incomplete Gamma Function and Error Function259
6.3 Exponential Integrals266
6.4 Incomplete Beta Function270
6.5 Bessel Functions of Integer Order274
6.6 Bessel Functions of Fractional Order,Airy Functions,Spherical Bessel Functions283
6.7 Spherical Harmonics292
6.8 Fresnel Integrals,Cosine and Sine Integrals297
6.9 Dawson’s Integral302
6.10 Generalized Fermi-Dirac Integrals304
6.11 Inverse of the Function x log(x)307
6.12 Elliptic Integrals and Jacobian Elliptic Functions309
6.13 Hypergeometric Functions318
6.14 Statistical Functions320
7 Random Numbers340
7.0 Introduction340
7.1 Uniform Deviates341
7.2 Completely Hashing a Large Array358
7.3 Deviates from Other Distributions361
7.4 Multivariate Normal Deviates378
7.5 Linear Feedback Shift Registers380
7.6 Hash Tables and Hash Memories386
7.7 Simple Monte Carlo Integration397
7.8 Quasi- (that is,Sub-) Random Sequences403
7.9 Adaptive and Recursive Monte Carlo Methods410
8 Sorting and Selection419
8.0 Introduction419
8.1 Straight Insertion and Shell’s Method420
8.2 Quicksort423
8.3 Heapsort426
8.4 Indexing and Ranking428
8.5 Selecting the Mth Largest431
8.6 Determination of Equivalence Classes439
9 Root Finding and Nonlinear Sets of Equations442
9.0 Introduction442
9.1 Bracketing and Bisection445
9.2 Secant Method,False Position Method,and Ridders’ Method449
9.3 Van Wijngaarden-Dekker-Brent Method454
9.4 Newton-Raphson Method Using Derivative456
9.5 Roots of Polynomials463
9.6 Newton-Raphson Method for Nonlinear Systems of Equations473
9.7 Globally Convergent Methods for Nonlinear Systems of Equations477
10 Minimization or Maximization of Functions487
10.0 Introduction487
10.1 Initially Bracketing a Minimum490
10.2 Golden Section Search in One Dimension492
10.3 Parabolic Interpolation and Brent’s Method in One Dimension496
10.4 One-Dimensional Search with First Derivatives499
10.5 Downhill Simplex Method in Multidimensions502
10.6 Line Methods in Multidimensions507
10.7 Direction Set (Powell’s) Methods in Multidimensions509
10.8 Conjugate Gradient Methods in Multidimensions515
10.9 Quasi-Newton or Variable Metric Methods in Multidimensions521
10.10 Linear Programming:The Simplex Method526
10.11 Linear Programming:Interior-Point Methods537
10.12 Simulated Annealing Methods549
10.13 Dynamic Programming555
11 Eigensystems563
11.0 Introduction563
11.1 Jacobi Transformations of a Symmetric Matrix570
11.2 Real Symmetric Matrices576
11.3 Reduction of a Symmetric Matrix to Tridiagonal Form:Givens and Householder Reductions578
11.4 Eigenvalues and Eigenvectors of a Tridiagonal Matrix583
11.5 Hermitian Matrices590
11.6 Real Nonsymmetric Matrices590
11.7 The QR Algorithm for Real Hessenberg Matrices596
11.8 Improving Eigenvalues and/or Finding Eigenvectors by Inverse Iteration597
12 Fast Fourier Transform600
12.0 Introduction600
12.1 Fourier Transform of Discretely Sampled Data605
12.2 Fast Fourier Transform (FFT)608
12.3 FFT of Real Functions617
12.4 Fast Sine and Cosine Transforms620
12.5 FFT in Two or More Dimensions627
12.6 Fourier Transforms of Real Data in Two and Three Dimensions631
12.7 External Storage or Memory-Local FFTs637
13 Fourier and Spectral Applications640
13.0 Introduction640
13.1 Convolution and Deconvolution Using the FFT641
13.2 Correlation and Autocorrelation Using the FFT648
13.3 Optimal (Wiener) Filtering with the FFT649
13.4 Power Spectrum Estimation Using the FFT652
13.5 Digital Filtering in the Time Domain667
13.6 Linear Prediction and Linear Predictive Coding673
13.7 Power Spectrum Estimation by the Maximum Entropy (All-Poles) Method681
13.8 Spectral Analysis of Unevenly Sampled Data685
13.9 Computing Fourier Integrals Using the FFT692
13.10 Wavelet Transforms699
13.11 Numerical Use of the Sampling Theorem717
14 Statistical Description of Data720
14.0 Introduction720
14.1 Moments of a Distribution:Mean,Variance,Skewness,and So Forth721
14.2 Do Two Distributions Have the Same Means or Variances?726
14.3 Are Two Distributions Different?730
14.4 Contingency Table Analysis of Two Distributions741
14.5 Linear Correlation745
14.6 Nonparametric or Rank Correlation748
14.7 Information-Theoretic Properties of Distributions754
14.8 Do Two-Dimensional Distributions Differ?762
14.9 Savitzky-Golay Smoothing Filters766
15 Modeling of Data773
15.0 Introduction773
15.1 Least Squares as a Maximum Likelihood Estimator776
15.2 Fitting Data to a Straight Line780
15.3 Straight-Line Data with Errors in Both Coordinates785
15.4 General Linear Least Squares788
15.5 Nonlinear Models799
15.6 Confidence Limits on Estimated Model Parameters807
15.7 Robust Estimation818
15.8 Markov Chain Monte Carlo824
15.9 Gaussian Process Regression836
16 Classification and Inference840
16.0 Introduction840
16.1 Gaussian Mixture Models and k-Means Clustering842
16.2 Viterbi Decoding850
16.3 Markov Models and Hidden Markov Modeling856
16.4 Hierarchical Clustering by Phylogenetic Trees868
16.5 Support Vector Machines883
17 Integration of Ordinary Differential Equations899
17.0 Introduction899
17.1 Runge-Kutta Method907
17.2 Adaptive Stepsize Control for Runge-Kutta910
17.3 Richardson Extrapolation and the Bulirsch-Stoer Method921
17.4 Second-Order Conservative Equations928
17.5 Stiff Sets of Equations931
17.6 Multistep,Multivalue,and Predictor-Corrector Methods942
17.7 Stochastic Simulation of Chemical Reaction Networks946
18 Two-Point Boundary Value Problems955
18.0 Introduction955
18.1 The Shooting Method959
18.2 Shooting to a Fitting Point962
18.3 Relaxation Methods964
18.4 A Worked Example:Spheroidal Harmonics971
18.5 Automated Allocation of Mesh Points981
18.6 Handling Internal Boundary Conditions or Singular Points983
19 Integral Equations and Inverse Theory986
19.0 Introduction986
19.1 Fredholm Equations of the Second Kind989
19.2 Volterra Equations992
19.3 Integral Equations with Singular Kernels995
19.4 Inverse Problems and the Use of A Priori Information1001
19.5 Linear Regularization Methods1006
19.6 Backus-Gilbert Method1014
19.7 Maximum Entropy Image Restoration1016
20 Partial Differential Equations1024
20.0 Introduction1024
20.1 Flux-Conservative Initial Value Problems1031
20.2 Diffusive Initial Value Problems1043
20.3 Initial Value Problems in Multidimensions1049
20.4 Fourier and Cyclic Reduction Methods for Boundary Value Problems1053
20.5 Relaxation Methods for Boundary Value Problems1059
20.6 Multigrid Methods for Boundary Value Problems1066
20.7 Spectral Methods1083
21 Computational Geometry1097
21.0 Introduction1097
21.1 Points and Boxes1099
21.2 KD Trees and Nearest-Neighbor Finding1101
21.3 Triangles in Two and Three Dimensions1111
21.4 Lines,Line Segments,and Polygons1117
21.5 Spheres and Rotations1128
21.6 Triangulation and Delaunay Triangulation1131
21.7 Applications of Delaunay Triangulation1141
21.8 Quadtrees and Octrees:Storing Geometrical Objects1149
22 Less-Numerical Algorithms1160
22.0 Introduction1160
22.1 Plotting Simple Graphs1160
22.2 Diagnosing Machine Parameters1163
22.3 Gray Codes1166
22.4 Cyclic Redundancy and Other Checksums1168
22.5 Huffman Coding and Compression of Data1175
22.6 Arithmetic Coding1181
22.7 Arithmetic at Arbitrary Precision1185
Index1195