图书介绍
Metric Methods in Finsler Spaces and in The Foundations of GeometryPDF|Epub|txt|kindle电子书版本网盘下载
![Metric Methods in Finsler Spaces and in The Foundations of Geometry](https://www.shukui.net/cover/55/31653450.jpg)
- 著
- 出版社: Princeton University Press
- ISBN:
- 出版时间:1942
- 标注页数:243页
- 文件大小:41MB
- 文件页数:251页
- 主题词:
PDF下载
下载说明
Metric Methods in Finsler Spaces and in The Foundations of GeometryPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter Ⅰ.METRIC SPACES WITH GEODESICS1
1.Metric Spaces;Notations1
2.The Basic Axioms11
3.Geodesics17
4.Topological Structure of One- and Two- dimensional Spaces With Axioms A - D24
Chapter Ⅱ.METRIC CONDITIONS FOR FINSLER SPACES30
1.Convex Surfaces and Minkowski Metrics31
2.Riemann Spaces and Finsler Spaces40
3.Condition Δ(P) and the Definition of the Local Metric47
4.Equivalence of the Local Metric with the Original Metric,and its Convexity53
5.The Minkowskian Character of the Local Metric57
6.The Continuity of the Local Metric63
Chapter Ⅲ.PROPERTIES OF GENERAL S.L.SPACES(Spaces with a unique geodesic through any two points)72
1.Axiom E.Shape of the Geodesics73
2.Two Dimensional S.L.Spaces79
3.The Inverse Problem for the Euclidean Plane89
4.Asymptotes and Limit Spheres98
5.Examples on Asymptotes and Limit Spheres The Parallel Axioms105
6.Desarguesian Spaces113
Chapter Ⅳ.SPACES WITH CONVEX SPHERES119
1.The Convexity Condition120
2.Characterization of the Higher Dimensional Elliptic Geometry124
3.Perpendiculars in Spaces with Spheres of Order 2132
4.Perpendiculars and Baselines in Open S.L.Spaces139
5.Definition and Properties of Limit Bisectors146
6.Characterizations of the Higher Dimensional Minkowskian and Euclidean Geometries154
7.Plane Minkowskian Geometries160
8.Characterization of Absolute Geometry168
Chapter Ⅴ.MOTIONS175
1.Definition of Motions.Involutoric Motions in S.L.Spaces176
2.Free Movability184
3.Example of a Non-homogeneous Riemann Space in which Congruent Pairs of Points Can be Moved into Each Other192
4.Translations Along g and the Asymptotes to g198
5.Quasi-hyperbolic Metrics208
6.Translations Along Non-parallel Lines and in Closed Planes214
7.Plane Geometries with a Transitive Group of Motions220
8.Transitive Abelian Groups of Motions in Higher Dimensional Spaces228
9.Some Problems Regarding S.L.Spaces and Other Spaces232
Literature235
Index240