图书介绍
高等数学(微积分)辅导讲义PDF|Epub|txt|kindle电子书版本网盘下载
![高等数学(微积分)辅导讲义](https://www.shukui.net/cover/8/31354943.jpg)
- 曹显兵,刘喜波主编 著
- 出版社: 西安:西安交通大学出版社
- ISBN:9787569303124
- 出版时间:2017
- 标注页数:316页
- 文件大小:27MB
- 文件页数:329页
- 主题词:微积分-研究生-入学考试-自学参考资料
PDF下载
下载说明
高等数学(微积分)辅导讲义PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第一章 函数、极限与连续1
考试要求1
第一节 函数1
考试内容精讲1
重要公式与结论4
典型题型与例题分析5
题型一 复合函数5
题型二 函数特性6
第二节 极限9
考试内容精讲9
重要公式与结论13
典型题型与例题分析14
题型一 极限概念与性质14
题型二 函数极限16
题型三 无穷小量阶的比较26
题型四 函数极限的逆问题28
题型五 数列极限30
第三节 连续35
考试内容精讲35
重要定理与结论36
典型题型与例题分析36
题型一 连续性与间断点的分类36
题型二 闭区间上连续函数的性质38
本章小结39
练习题一40
练习题一答案42
第二章 导数与微分43
考试要求43
考试内容精讲43
重要公式与结论47
典型题型与例题分析49
题型一 有关导数与微分的定义49
题型二 分段函数的导数52
题型三 导数的几何应用55
题型四 利用导数公式及法则求导57
题型五 导函数的补充问题60
本章小结61
练习题二62
练习题二答案64
第三章 一元微分学的应用65
考试要求65
考试内容精讲65
重要公式与结论69
典型题型与例题分析70
题型一 微分中值定理的有关问题70
题型二 确定函数方程f(x)=0的根78
题型三 不等式的证明81
题型四 单调性、极值与最值问题87
题型五 凹凸性、拐点与渐近线89
本章小结94
练习题三95
练习题三答案97
第四章 不定积分98
考试要求98
考试内容精讲98
重要公式与结论102
典型题型与例题分析103
题型一 基本概念与性质103
题型二 换元积分法104
题型三 分部积分法107
题型四 有理函数的积分(数学一、二要求,数学三可作参考)109
题型五 三角有理函数的积分(数学一、二要求,数学三作参考)110
题型六 综合题112
本章小结114
练习题四115
练习题四答案116
第五章 定积分与反常积分117
考试要求117
考试内容精讲117
重要公式与结论124
典型题型与例题分析126
题型一 定积分的概念及性质126
题型二 定积分的计算128
题型三 变限积分131
题型四 反常积分136
题型五 定积分有关命题的证明138
题型六 定积分的应用140
本章小结145
练习题五146
练习题五答案148
第六章 多元函数微分学149
考试要求149
考试内容精讲149
重要公式与结论155
典型题型与例题分析156
题型一 基本概念及性质156
题型二 求多元函数的偏导数和全微分159
题型三 变量代换下表达式的变形163
题型四 反问题165
题型五 求多元函数的极值167
题型六 多元函数的方向导数及梯度(仅数学一要求)171
题型七 多元函数微分学的几何应用(仅数学一要求)172
本章小结173
练习题六174
练习题六答案176
第七章 二重积分177
考试要求177
考试内容精讲177
重要公式与结论179
典型题型与例题分析180
题型一 基本概念及性质180
题型二 二重积分的基本计算181
题型三 利用区域的对称性和函数的奇偶性计算积分185
题型四 分块函数的积分188
题型五 交换积分次序及坐标系189
题型六 无界区域上二重积分的计算192
题型七 二重积分的应用(仅数学一要求)192
本章小结193
练习题七194
练习题七答案196
第八章 常微分方程与差分方程197
考试要求197
考试内容精讲197
典型题型与例题分析202
题型一 一阶微分方程的求解202
题型二 可降阶的高阶微分方程(仅数学一、二要求)207
题型三 高阶常系数线性微分方程的求解209
题型四 一阶差分方程(仅数学三要求)211
题型五 求解积分方程212
题型六 微分方程的应用214
本章小结217
练习题八218
练习题八答案220
第九章 无穷级数(仅数学一、三要求)221
考试要求221
考试内容精讲221
重要公式与结论225
典型题型与例题分析226
题型一 数项级数敛散性的判定226
题型二 数项级数敛散性的证明232
题型三 求幂级数的收敛半径及收敛域235
题型四 求幂级数的和函数238
题型五 求数项级数的和241
题型六 函数的幂级数展开(仅数学一要求,数学三作参考)242
题型七 有关傅里叶级数的问题(仅数学一要求)244
本章小结246
练习题九247
练习题九答案249
第十章 经济应用专题(仅数学三要求)250
考试要求250
考试内容精讲250
典型题型与例题分析252
题型一 导数在经济中的应用252
题型二 积分在经济上的应用255
题型三 多元函数微分学在经济上的应用256
本章小结258
练习题十259
练习题十答案261
第十一章 向量代数与空间解析几何(仅数学一要求)262
考试要求262
考试内容精讲262
典型题型与例题分析267
题型一 与向量代数有关的计算问题267
题型二 求平面与直线方程268
题型三 讨论平面、直线的位置关系269
题型四 求对称点、投影点及投影曲线271
题型五 求旋转面方程272
本章小结275
练习题十一276
练习题十一答案277
第十二章 三重积分、曲线、曲面积分(仅数学一要求)278
考试要求278
第一节 三重积分278
考试内容精讲278
重要公式与结论280
典型题型与例题分析281
题型一 三重积分的计算281
题型二 三重积分的应用284
第二节 曲线积分285
考试内容精讲285
重要公式与结论288
典型题型与例题分析288
题型一 对弧长的曲线积分的计算288
题型二 对坐标的曲线积分的计算290
题型三 平面曲线积分与路径无关的问题295
题型四 曲线积分的应用299
第三节 曲面积分301
考试内容精讲301
重要公式与结论303
典型题型及例题分析303
题型一 对面积的曲面积分的计算303
题型二 对坐标的曲面积分的计算305
题型三 曲面积分的应用309
第四节 场论初步310
考试内容精讲310
典型题型及例题分析311
本章小结312
练习题十二313
练习题十二答案316