图书介绍
奇异积分与函数的可微性PDF|Epub|txt|kindle电子书版本网盘下载
![奇异积分与函数的可微性](https://www.shukui.net/cover/49/31142241.jpg)
- (美)斯坦(Stein,E.M.)著;程民德译 著
- 出版社: 北京:北京大学出版社
- ISBN:13209·113
- 出版时间:1986
- 标注页数:366页
- 文件大小:9MB
- 文件页数:382页
- 主题词:
PDF下载
下载说明
奇异积分与函数的可微性PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
序言1
符号1
第一章 实变理论的若干基本概念1
1 极大函数2
2 可测集的一般点邻近的性质12
3 Rn中的开集分解为立方体16
4 Lp空间的一个内插定理21
5 进一步的结果25
注释29
第二章 奇异积分31
1 Rn上调和分析某些内容的回顾32
2 奇异积分:核心部分34
3 奇异积分:前面结果的某些推广与变形41
4 同展缩可交换的奇异积分算子47
5 向量值的类似55
6 进一步的结果59
注释65
第三章 Riesz变换,Poisson积分与球调和函数66
1 Riesz变换66
2 Poisson积分与恒等逼近73
3 高阶Riesz变换与球调和函数系84
4 进一步的结果97
注释100
第四章 Littlewood-Paley理论与乘子102
1 Littlewood-Paley的g函数102
2 函数g1109
3 乘子(第一型)119
4 部分和算子的应用126
5 二进分解131
6 Marcinkiewicz乘子定理137
7 进一步的结果142
注释146
第五章 通过函数空间描述的可微性148
1 Riesz位势149
2 Sobolev空间L?(Rn)155
3 Bessel位势167
4 Lipschitz连续函数空间Λa182
5 空间Λ?194
6 进一步的结果205
注释213
第六章 开拓与限制215
1 开集分解成立方体216
2 Whitney型的开拓定理220
3 对于具有最小光滑边界的区域的开拓定理233
4 进一步的结果247
注释251
第七章 再论调和函数252
1 非切线收敛与Fatou定理252
2 面积积分261
3 Hp空间论的应用275
4 进一步的结果298
注释303
第八章 函数的微分304
1 逐点可微的几个概念305
2 函数的分解312
3 可微的特征316
4 对称化原理325
5 可微的另一个特征331
6 进一步的结果337
注释342
附录343
A.若干不等式343
B.Marcinkiewicz内插定理344
C.调和函数的某些初等性质348
D.关于Rademacher函数的不等式351
参考文献354
名词索引365